
Clothoid ∗

The Clothoid, also called Spiral of Cornu, is a curve whose curvature

is equal to its arclength. It has the parametric formula:

(∫ t

0

cos(x2/2) dx,

∫ t

0

sin(x2/2) dx)

)
.

∗This file is from the 3D-XploreMath project.
Please see http://rsp.math.brandeis.edu/3D-XplorMath/index.html
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Discussion

If a plane curve is given by a parametric formula (f (t), g(t)), then

the length of the part corresponding to a parameter interval [a, t]

is s(t) =
∫ t

a

√
f ′(τ )2 + g′(τ )2 dτ . If we apply this formula to the

Clothoid we see that the arclength corresponding to the interval [0, t]

is s(t) =
∫ t

0 1 dt = t, so that the parameter t is precisely the (signed!)

arclength measured along the curve from its midpoint, (0, 0).

Next, recall that the curvature κ of a plane curve is defined as the rate

of change (with respect to arclength) of the angle θ that its tangent

makes with some fixed line (which we can take to be the x-axis).

And since the slope dy
dx of the curve is tan(θ), and by the chain rule

dy
dx = (dy/dt)/(dx/dt) = g′

f ′ , we see that θ(t) = arctan(g′(t)/f ′(t)).

So if we assume that parameter t is arclength, then using the formulas

for the derivative of the arctangent and of a quotient, we see that:

κ(t) = θ′(t) = −g′(t)f ′′(t) + f ′(t)g′′(t),

(where we have ignored the denominator, since parameterization by

arclength implies that it equals unity). Applying this to the Clothoid,

we obtain κ(t) = t. Since the arclength function is also t, this shows

that the Clothoid is indeed a curve whose curvature function is equal

to its arclength function.

The Fundamental Theorem of Plane Curves

Next let’s look at this question from the other direction, and also

more generally. Suppose we are given a function κ(t). Can we find

a plane curve parameterized by arclength (f (t), g(t)) such that κ is

its curvature function? Recall from above that dθ
dt = κ, and of course

dx
dt = f ′(t) and dy

dt = g′(t). Now, since (dx
dt )

2 + (dy
dt )

2 = 1, while
dy
dt/

dx
dt = dy/dx = tan(θ), it follows from elementary trigonometry
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that dx
dt = cos(θ) while dy

dt = sin(θ). Thus we have the following

system of three differential equations for the three functions θ(t),

f (t), and g(t):

θ′(t) = κ(t)

f ′(t) = cos(θ(t))

g′(t) = sin(θ(t)).

The first equation has the general solution θ(τ ) = θ0 +
∫ τ

0 κ(σ) dσ,

and substituting this in the other two equations, we find that the

general solutions for f and g are given by:

f (t) = x0 +

∫ t

0

cos(θ0 +

∫ τ

0

κ(σ) dσ) dτ

g(t) = y0 +

∫ t

0

sin(θ0 +

∫ τ

0

κ(σ) dσ) dτ.

This is an elegant explicit solution to our question! It shows that

not only is there a solution to our question (say the one obtained by

setting x0, y0 and θ0 all equal to zero), but also that the solution is

unique up to a translation (by (x0, y0)) and a rotation (by θ0), that

is unique up to a general rigid motion.

This fact has a name—it is called The Fundamental Theorem of

Plane Curves. It tell us us that most geometric and most economical

descriptions of plane curves is not via parametric equations, which

have a lot of redundancy, but rather by the single function κ that

gives the curvature as a function of arclength.

Exercise Take κ(t) = t and check that the above formulas give the

parametric equations for the Clothoid in this case.
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Back to the Clothoid

We close with a few more details about the Clothoid. First, here is

a plot of the integrand sin(x2/2):

and next a plot of its indefinite integral,
∫ t

0 sin(x2/2) dx, the so-called

Fresnel integral:

From this plot we see that the y-coordinate oscillates. Its limit as t

goes to infinity is
√

π/2, from which we see that the centers of the

two spirals of the Clothoid are at ±(
√

π/2,
√

π/2).

XL & RSP.
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