
About The Feigenbaum Tree*

See also: Julia Set of z → (z2 − c)

The Feigenbaum Tree is one of the earliest examples of
parameter dependent behavior of a dynamical system. The
dynamical system in question is called the Logistic Map:

fµ(y) := 4µ · y(1− y), y ∈ [0, 1], µ ∈ [1/4, 1].

Since both the parameter space, [1/4, 1], and the dynami-
cal space, [0, 1], are 1-dimensional, one can illustrate in a
(µ, y)-plane how the dynamical behavior changes as the pa-
rameter µ varies. The usual experiment (and the one used
in 3DXM) goes as follows: Starting with a set of initial
values {yk; yk ∈ [0, 1], k = 1, . . . ,K} (and with as many
parameter values µ as one wants to handle) one computes
many iterations f◦nµ (yk), n = 1, . . . , N with N large.

If one plots only the iterations with say n ≥ 1000, then one
observes in the (µ, y)-plane the Feigenbaum Tree: for small
µ the iterated points f◦nµ (yk) converge to a stable fixed
point of the map fµ, yf = fµ(yf ), yf := 1−1/4µ. Observe
that the derivative f ′ at the fixed point is 2− 4µ ≤ 0. At
µ = 3/4 the derivative at the fixed point is −1, so that
the fixed point stops being attractive. It turns out that
for larger µ the orbit of period 2 is attractive for a while

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

1



– until µ reaches another bifurcation point after which an
orbit of period 4 becomes attractive.

This period doubling “cascade” continues up to a certain
µ-value, past which there is for a while no longer an attrac-
tive orbit. All this is clearly visible in the 3DXM demo.
One should use the Action Menu entry: Iterate Mouse

Point Forward to watch how arbitrary initial points are
iterated and how these iterations converge to the attract-
ing orbits of period 2d in the left, period doubling, part of
the Feigenbaum Tree. —Speed-Up Note: If one presses
DELETE either during the default iterations or during the
iteration of a point chosen by mouse, then all delays are
skipped and the result of the iteration is reached quickly.

After the period doubling in the left part has been ob-
served one wants to look at the right part of the Feigen-
baum Tree more closely. The µ-interval which the illus-
tration uses is the interval [bb, cc]. It can be changed in
the Parameter entry of the Settings Menu. Since the at-
tractive orbit of period 2 appears after µ = 0.75, one loses
only the simple attractors if one increases bb from 0.25 to
0.75, and one gains that the remaining part of the Tree
is stretched by a factor of 3. In the same way one can
magnify any part of the parameter space. Of course the
dynamical space is always fully shown—unless one decides
to use SHIFT+MOUSE to scale the image to see part of
the dynamical space magnified. In this case translation
using CONTROL+MOUSE-DRAG may be useful.
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The most obvious feature in the right part of the Feigen-
baum Tree are gaps, three fairly large ones and any number
of thinner ones. The three large ones belong to parameter
intervals where the map fµ has attractive orbits of period
6, period 5, resp. period 3. If one magnifies a gap enough,
one can experimentally check that the gaps belong to at-
tractive orbits (use in the Action Menu Iterate Mouse

Point Forward). One also observes that at the right end
of these intervals the periods double again, and again. In
other words, the Feigenbaum Tree illuminates, almost at
the first glimpse, many properties of this 1-parameter fam-
ily of iterated maps.

The Action Menu has been expanded by four entries It-

eration Invariant Density (either with mouse choice of
aa = µ or previous aa) and Density Function (again with
mouse choice of aa or previous value). Before one chooses
any of these one should look at Iterate Mouse Point

Forward, where one sees how the iterated point, given by
the vertical coordinate y, jumps around with fixed µ. The
Iteration Invariant Density expands this: 1000 dif-
ferent y-values are chosen and represented in the left-most
column on the screen. These points are iterated and shown
in the second column, iterated again and shown in the third
column, and so on, 400 times. Except for the first few
columns one clearly sees a density pattern develop: all the
vertical columns look essentially alike. This can be studied
further with the entry Density Function: Here we count
how often each pixel-sized interval of the dynamical (=ver-
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tical) interval is visited during the iterations and we plot
the counting result (normalized to fit on the screen). We
observe a function that describes the probability density
with which each pixel interval is visited. – These demos
explain why the curves that represent attractors do extend
into the chaotic regions.

Finally we remark that the Feigenbaum Tree is related to
the real part of the Mandelbrot set because the Mandelbrot
set also parametrizes quadratic maps z → fc(z) := (z2−c)
according to their dynamical properties. If c is chosen
from the big bottom apple then fc has an attractive fixed
point. As one passes on the real axis from the apple to
the disk above it, the fixed point changes from attractive
through indifferent to unstable and the orbit of period 2
becomes attractive. As one moves (always along the real
axis) towards the top of the Mandelbrot set one continues
to meet exactly the same kind of dynamical behavior as
one sees in the Feigenbaum Tree. For more details see the
documentation for Julia Set of z → (z2 − c).

H.K.
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