
About the Classical Enneper Surface
and some Polynomial Relatives

See also: About Minimal Surfaces

Definition with explicit formulas

The classical Enneper Surface is a minimal immersion
of the complex plane, C, into Euclidean space R3. It
is given by the formula

F (z) := real({z3/3 − z, i ∗ (z3/3 + z), z2}).
If one wants to see coordinate lines on the image one
can use Cartesian coordinates for the complex plane,
z := x + i · y, or polar coordinates z := r · (cos ϕ +
i · sinϕ), and map those grids with F . The Cartesian
choice is natural here since its parameter lines are
principal curvature lines. However the polar choice
also has merits—namely, rotations around the ori-
gin are isometries and the coordinate lines are orbits.
Moreover all symmetry lines of the surface are radial
parameter lines. The Action Menu of 3DXM allows
to switch between these parametrizations.
In 3DXM one can also deform this classical surface,
but we need to explain the significance of what one



sees. See the last page of this text.

Early in the second half of the nineteenth century the
Enneper-Weierstraß representation of minimal sur-
faces was discovered. Its main advantage is that it
permits one to write a formula for a minimal surface
in terms of important geometric quantities. Every
surface in R3 can be mapped to the 2-sphere S2 by
sending each point on the surface to the unit normal
at this point; this map is called the geometric Gauß
map N . For minimal surfaces this map is angle pre-
serving, but orientation reversing. Composition of N
with the orientation reversing stereographic projec-
tion therefore gives a map g from the surface into C
which is both and orientation preserving. Finally, if
we interpret 90◦ rotation on each tangent space of a
surface in R3 as multiplication of tangent vectors by i,
then with this convention g becomes a meromorphic
function, the meromorphic Gauß map of the minimal
surface. This meromorphic Gauß map is one-half of
the Weierstraß data which are needed to write down
the Enneper-Weierstraß representation. The remain-
ing part of these data is the differential dF 3 of the
third component of F , i.e., of the height function on
the minimal surface. It might seem at first that we



must know a minimal surface rather well before we
have its Weierstraß data. However, on a large class of
geometrically important minimal surfaces the situa-
tion is simple indeed. If a minimal surface is complete
and has finite total curvature then the Gauß map g
is determined—up to a constant factor—by its zeros
and poles, in other words by its vertical normals. This
important result extends to differentials, in particu-
lar to the differential of the height function, after we
perform a small trick, namely extend the real valued
differential dF 3 to a complex valued one by putting
for every tangent vector v of the surface

dh(v) := dF 3(v) − i · dF 3(i · v)

:= dF 3(v) − i · dF 3(Rot90(v)).

To make matters even simpler, observe that the points
on the surface, where the normal is vertical, are the
same points where the differential of the height func-
tion is zero. More precisely, the zeros and poles of g
on the minimal surface are precisely the zeros of dh,
even with the same multiplicity. (To complete this
discussion we would have to study the situation at
infinity, but we will omit this.) The main point is
to point out that very few, finitely many, data about



such minimal surfaces suffice to find their Weierstraß
data and therefore explicitly parametrize them. Here
is this famous formula:

Weierstraß Representation in terms of g, dh:

F (z) := Re
(∫ z

∗

{
1
2

(
g − 1

g

)
dh,

i

2

(
g +

1
g

)
dh, dh

})
The classical Enneper surface is obtained if we put
g(z) = z, dh = zdz.
This generalizes to polynomials P (z), put:
g(z) = P (z), dh = P (z)dz.

3DXM allows P (z) := aa · z + bb · z2 + cc · z3.

The pure powers have again the rotations around the
origin as metric isometry group and polar coordinates
provide a much better view of these surfaces and are
recommended. All surfaces of the associate family
are, for g(z) = zk, congruent. There are straight
lines on the surface, and if one looks in the direction
of the z-axis onto the surface, then the portion below
these lines is drawn first. The default morph deforms
two such surfaces into each other.


