
About Space Curves of Constant Torsion

See also: About Space Curves of Constant Curvature

Definition via Differential Equations

Most Space Curves that 3DXM can exhibit are given
in terms of explicit formulas or explicit geometric con-
structions. In “About Space Curves of Constant Cur-
vature” we explain how curvature and torsion of a
space curve are defined. The definition immediately
translates into a construction of the curve from cur-
vature and torsion via the following differential equa-

tions, the famous

Frenet-Serret Equations:

ė1(t) := κ(t) · e2(t),

ė2(t) := −κ(t) · e1(t) − τ(t) · e3(t),

ė3(t) := τ(t) · e2(t).

For given continuous functions κ, τ these differential
equations have — for given orthonormal initial values
— unique orthonormal solutions {e1(t), e2(t), e3(t)}.

The curve c(t) :=
∫

t

e1(s)ds is then parametrized by
arc length and has the given curvature functions κ, τ .



The simplest curves in the plane are straight lines
and circles, curves of constant curvature. It is there-
fore natural to discuss also space curves of constant
curvature. In 3DXM we illustrate these by finding
closed examples in the following family:

κ(t) := aa,

τ(t) := bb + cc · sin(t) + dd · sin(2t) + ee · sin(3t).

To understand the Frenet-Serret equations better one
can also study other special cases. Experimentation
shows that the following curves of constant torsion

κ(t) := bb + cc · cos(ff · t) + dd · cos(2ff · t)+
ee · cos(3ff · t)

τ(t) = aa
have an amusingly strong change of shape as one
changes the parameters. Again we look for closed
examples with the help of symmetries. Note that
180◦ rotations around the principal normals e2(t) at
t/ff = kπ, k ∈ Z are isometries of the curves. At
t/ff = π/2 + kπ, k ∈ Z the 180◦ rotations around
the other normal vector of the frame, e3(t), are also
isometries of the space curve. This allows us to for-
mulate the closing condition:
If the normals e2(0) at c(0), e3(π·ff/2) at c(π·ff/2)



intersect and if their angle is a rational multiple of π
then the space curve closes up. Numerically one can
use the parameter cc to keep the angle constant, e.g.
at π/3, π/4, and then use aa to let the normals in-
tersect. There are many closed solutions. Typically
they look like a collection of bed springs which are
joint by fairly straight pieces. If one allows these bed
springs to have many turns then the closing values of
aa and cc are almost equidistant. The default morph
of 3DXM shows this, it contains two closed and three
approximately closed curves which are made of three

bed springs with an increasing number of turns. It is
easy to extend this family to springs with more turns,
but one can also find all the small values, down to just
one half turn for each spring. — We found no closed
curves made of only two springs.
Here is a list of numerically closed curves:

Curves with 3-fold symmetry, ff = 0.208,

aa, 0.178632213, 0.284031845, 0.417033334,
cc, 0.2874008, 0.90658882, 2.19234962,
aa, 0.513441035, 0.59263462, 0.628044,
cc, 3.489480574, 4.7901189, 5.4411264,
aa, 0.661324546, 0.69281176, 0.7227614
cc, 6.09244336, 6.7440016, 7.39575343



Curves with 4-fold symmetry, ff = 0.23,

aa, 0.2137654757, 0.3704887, 0.479019355,
cc, 0.234123448, 0.89640923, 1.59595534,
aa, 0.56642393, 0.6414483533, 0.7081321561,
cc, 2.30473675, 3.01756515691, 3.732639742,
aa, 0.76871766, 0.8246012, 0.87671763
cc, 4.449136, 5.1666082, 5.8847911

Curve with 5-fold symmetry, ff = 0.2324,
aa = 0.73855871446286, cc = 2.96466

If ones does not begin with the differential equation
but starts from the curve, then one cannot define the
torsion at points where the curvature vanishes. This
problem is caused by the use of the Frenet frame.
Another frame is suggested by a mechanical consid-
eration: If a massive sphere would move along the
space curve (imagine the space curve as a wire and
the sphere with a hole through which the wire slides
without friction) then inertia would make the sphere
avoid unnecessary rotations around the wire. In other
words: A frame which is attached to the sphere so
that it is normal to the wire remains normal and
the derivatives of the normal vectors have no normal



components. Such frames are called “parallel as nor-
mal vectors”, or simply “parallel frames”. In 3DXM
one can choose Parallel Frame in the Action Menu .
Now Show Curve as Tube illustrates the behaviour
of the chosen frame. In particular the torus knots
show how the parallel frames avoid “unnecessary” ro-
tations which the Frenet frames must make.

An advantage of such parallel frames is that they
neither require to assume more than two continuous
derivatives of the curve nor that κ never vanishes—
even straight lines are not exceptional curves if one
works with these frames. Let φ(t) be an antideriva-
tive of the torsion function, i.e., φ̇(t) = τ(t). Then
the differential equation that determines this frame
has the following simple form:

Frenet-Serret Equations for Parallel Frames:

ė1(t) := κ(t) cos(φ(t)) · e2(t) + κ(t) sin(φ(t)) · e3(t)

ė2(t) := −κ(t) cos(φ(t)) · e1(t)

ė3(t) := −κ(t) sin(φ(t)) · e1(t).


