
Surfaces of Revolution*

with Constant Gauß Curvature

A surface of revolution is usually described by giving its
meridian curve s 7→ (r(s), h(s)). The surface is then ob-
tained by rotation:

(x, y, z)(s, ϕ) := (r(s) cosϕ, r(s) sinϕ, h(s)).

Any kind of curvature condition can be expressed as an
ordinary differential equation for the meridian curve.

The case of given Gauß curvature K(s) is particularly
simple if the meridian is parametrized by arclength, i.e.,
r02 + h02 = 1. In this case the meridian is, under the con-
dition |r0(s)| < 1, determined by

r00(s) + K(s) · r(s) = 0, h(s) =
Z s

0

p
1− r0(t)2dt.

In the case of K(s) := 0 each solution r(s) is a linear func-
tion. We obtain circular cylinders and cones.
Ferdinand Minding (1806 - 1885) studied the case of con-
stant nonzero curvature. He determined the geodesics on
the Pseudosphere (K = −1), but we could not find whether
he was the first to describe this famous surface. He ob-
tained the following formulas:

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The examples for K = 1:

The Sphere:
r(s) = sin(s), 0 ≤ s ≤ π

With cone points:
r(s) = a sin(s), 0 ≤ s ≤ π, 0 < a < 1

With singularity curve:
r(s) = a cos(s), −b ≤ s ≤ b, a > 1, sin(b) = 1/a.

The examples for K = −1:

The Pseudosphere (with singular curve {s = 0}):
r(s) = exp(−s), 0 ≤ s

With cone point and singular curve:
r(s) = a sinh(s), 0 ≤ s ≤ b, 0 < a < 1, cosh(b) = 1/a

With two singular curves:
r(s) = a cosh(s), −b ≤ s ≤ b, 0 < a, sinh(b) = 1/a.

The Pseudosphere cannot be extended beyond the singular
curve {s = 0}, but the metric of the Pseudosphere,

ds2 + exp(−2s)dϕ2,
extends to a complete metric on R× R with K = −1 and
the same is true for the metric of the last example:

ds2 + a2 cosh2(s)dϕ2.
The fact that such a simply connected complete Rieman-
nian plane with K = −1 is isometric to the non-Euclidean
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geometry of Bolyai and Lobachevsky was not yet estab-
lished when Minding studied geodesic triangles on the Pseu-
dosphere.
Surfaces with K = −1 in R3 have another interesting
property: If the asymptote directions are described by
two vectorfields of constant length, then these vector fields
commute. For parametrizations of K = −1 surfaces with
asymptote lines as parameter lines one therefore has: the
edge lengths of the parameter quadrilaterals are all the
same. Such nets are called Tchebycheff nets. They are
determined by the angle between the asymptote lines. A
quite unexpected theory developed from here. It is out-
lined in
About Spherical Surfaces (see the Documentation Menu).
The Pseudosphere turns out to be the simplest example of
that theory.
These Tebycheff nets also play a crucial role in the proof of
Hilbert’s theorem, stating that the hyperbolic plane can-
not be smoothly immersed isometrically into R3.
H.K.
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