Complex Map $z \mapsto \sqrt{z}$

Look at the functions $z \mapsto z^{2}, z \mapsto 1 / z$ and their ATOs first.
The function $z \mapsto \sqrt{z}$ should be looked at using both Cartesian and Polar Grids
Note that since this function is the inverse of $z \rightarrow z^{2}$, we expect to see related phenomena: circles around 0 go to circles around 0 , radial lines from 0 go to radial lines from 0 , but now with half the angle between them (since we look at the inverse map). A neigbourhood of 0 was very much contracted by $z \rightarrow z^{2}$, now we see the opposite, the distance of points from zero is increased very much (beyond any Lipschitz bound).
A more complicated aspect is the fact, since all $z \neq 0$ have two distinct square roots differing by a factor of -1 , the function $z \mapsto \sqrt{z}$ is not really a well defined map until we make some choices.
The function \sqrt{z} used by 3D-Filmstrip maps the upper half plane to the first quadrant, the (strict) lower half plane to the fourth quadrant, and the negative
real axis to the positive imaginary axis-so there is no continuity from above to below the negative real axis (which is therefore called a "branch cut").

The Cartesian grid lines are mapped to two families of hyperbolae which intersect each other orthogonally. H.K.

