Complex Map $z \rightarrow \log z$
 The Complex Logarithm

Look at the function $z \rightarrow e^{z}$ and its ATO first.

The complex Logarithm tries to be the inverse function of the complex Exponential. However, exp is $2 \pi i$-periodic, so such an inverse can only exist as a multivalued function.

From the differential equation $\exp ^{\prime}=\exp$ follows that the derivative of the inverse is not multivalued and in fact very simple:

$$
\log ^{\prime}(z)=1 / z
$$

Integration of the geometric series

$$
\begin{aligned}
1 / z & =1 /(1-(1-z))=\sum_{k}(1-z)^{k} \\
& =\left(\sum_{k}-(1-z)^{k+1} /(k+1)\right)^{\prime}
\end{aligned}
$$

gives the Taylor expansion around 1 of log. The so called "principal value" of the complex Logarithm is defined in the whole plane, but slit along the negative real axis, for example by integrating the derivative $\log ^{\prime}(z)=1 / z$ in that simply connected domain along any path which starts at 1 .

Different values of $\log z$ differ by integer multiples of $2 \pi i$, e.g. $i=\exp (\pi i / 2)$ implies $\log i=\pi i / 2+2 \pi i \cdot \mathbb{Z}$. H.K.

