About The Dragon Curve*

see also: Koch Snowflake, Hilbert SquareFillCurve To speed up demos, press DELETE

The Dragon is constructed as a limit of polygonal approximations D_{n}. These are emphasized in the 3DXM default demo and can be described as follows:

1) D_{1} is just a horizontal line segment.
2) D_{n+1} is obtained from D_{n} as follows:
a) Translate D_{n}, moving its end point to the origin.
b) Multiply the translated copy by $\sqrt{1 / 2}$.
c) Rotate the result of b) by -45° degrees and call the result C_{n}.
d) Rotate C_{n} by -90° degrees and join this rotated copy to the end of C_{n} to get D_{n+1}.

The fact that the limit points of a sequence of longer and longer polygons can form a two-dimensional set is not really very surprising. What makes the Dragon spectacular is that it is in fact a continuous curve whose image has positive area-properties that it shares with Hilbert's square filling curve.

There is a second construction of the Dragon that makes it easier to view the limit as a curve. Select in the Action Menu: Show With Previous Iteration.

[^0]This demo shows a local construction of the Dragon: We obtain the next iteration D_{n+1} if we modify each segment of D_{n} by replacing it by an isocele 90° triangle, alternatingly one to the left of the segment, and the next to the right of the next segment. This description has two advantages:
(i) Every vertex of D_{n} is already a point on the limit curve. Therefore one gets a dense set of points, $c\left(j / 2^{n}\right)$, on the limit curve c.
(ii) One can modify the construction by decreasing the height of the modifying triangles from $a a=0.5$ to $a a=0$. The polygonal curves are, for $a a<0.5$, polygons without self-intersections. This makes it easier to imagine the limit as a curve. In fact, the Default Morph shows a deformation from a segment through continuous curves to the Dragonmore precisely, it shows the results of the $(e e=11)$ th iterations towards those continuous limit curves.

As another option, one can vary the parameter $b b$ through integer values $b b=2,3, \ldots$ to obtain other families of Fractal curves (from the Action Menu only).

Finally, one can choose in the Action Menu to map any selected Fractal curve by either the complex map $z \rightarrow z^{2}$ or by the complex exponential. The program waits for a mouse click and then chooses the mouse point as origin.

[^1]
[^0]: * This file is from the 3D-XplorMath project. Please see:
 http://3D-XplorMath.org/

[^1]: R.S.P., H.K.

