About The Dragon Curve*

see also: Koch Snowflake, Hilbert SquareFillCurve To speed up demos, press DELETE

The Dragon is constructed as a limit of polygonal approximations D_n . These are emphasized in the 3DXM default demo and can be described as follows:

- 1) D_1 is just a horizontal line segment.
- 2) D_{n+1} is obtained from D_n as follows:
 - a) Translate D_n , moving its end point to the origin.
 - b) Multiply the translated copy by $\sqrt{1/2}$.
 - c) Rotate the result of b) by -45° degrees and call the result C_n .
 - d) Rotate C_n by -90° degrees and join this rotated copy to the end of C_n to get D_{n+1} .

The fact that the **limit points** of a sequence of longer and longer polygons can form a two-dimensional set is not really very surprising. What makes the Dragon spectacular is that it is in fact a **continuous curve** whose image has positive area—properties that it shares with Hilbert's square filling curve.

There is a second construction of the Dragon that makes it easier to view the limit as a curve. Select in the Action Menu: *Show With Previous Iteration*.

^{*} This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/

This demo shows a local construction of the Dragon: We obtain the next iteration D_{n+1} if we modify each segment of D_n by replacing it by an isocele 90° triangle, alternatingly one to the left of the segment, and the next to the right of the next segment. This description has two advantages:

(i) Every vertex of D_n is already a point on the limit curve. Therefore one gets a dense set of points, $c(j/2^n)$, on the limit curve c.

(ii) One can modify the construction by decreasing the height of the modifying triangles from aa = 0.5 to aa = 0. The polygonal curves are, for aa < 0.5, polygons without self-intersections. This makes it easier to imagine the limit as a curve. In fact, the *Default Morph* shows a deformation from a segment through continuous curves to the Dragon—more precisely, it shows the results of the (ee = 11)th iterations towards those continuous limit curves.

As another option, one can vary the parameter bb through integer values bb = 2, 3, ... to obtain other families of Fractal curves (from the Action Menu only).

Finally, one can choose in the Action Menu to map any selected Fractal curve by either the complex map $z \to z^2$ or by the complex exponential. The program waits for a mouse click and then chooses the mouse point as origin.

R.S.P., H.K.