
Conformal Maps

The purpose of this category is to help visualize
the mapping properties of a complex analytic func-
tion. The basic method for using this category is to
first, as usual, choose a canned object from the Con-
formal Map menu, or else choose User Defined... from
the menu and define your own mapping. As soon as a
mapping has been selected, the program draws a co-
ordinate grid in the graphics window (the “preimage
grid”). This is a “Cartesian” grid in the rectangle
of the complex z-plane defined by umin ≤ �(z) ≤
umax and vmin ≤ �(z) ≤ vmax, so the total resolu-
tion of this grid is uResolution × vResolution. (As
usual, you can modify the values of umin, umax vmin,
vmax, uResolution and vResolution using the Set-
tings Menu.)

When the preimage grid has been drawn, it remains
visible for a few seconds and then is replaced by its
image under the chosen mapping (the “image grid”).
But the preimage grid has not been erased! You can
see it at any time by holding down the option and
command keys and pressing the mouse at any point
in graphics window. The preimage grid will appear

1



and stay in view until you release the mouse button,
at which point the image grid will reappear. You
can keep switching back and forth between the two
images by pressing and releasing the mouse button
while holding down the option and command keys.

The idea, of course, is to develop a feeling about
what gets mapped where by the chosen mapping. If
the map is at all complicated, it can be difficult to
match up a line in the pre-image with its correspond-
ing curve in the image so, to help with this match-
ing, each gridline is drawn in a different color—with
the same color used of course for both the preimage
and image. This is called “color coding the gridlines’.
Since color coding is seen better against a black back-
ground, black is the default background in this cate-
gory, but it is possible to choose a white background
using the View menu.)

You can switch the preimage domain from a rectan-
gle in cartesian coordinates to a wedge in polar coor-
dinates by choosing Polar Grid from the Conformal
Map menu. Now the preimage curves will be parts of
rays thru the origin and parts of circles centered at
the origin.

2



You can add your own lines and circles to the preim-
age view (and their images to the image view) by
selecting either Choose Line by Mouse or Choose Cir-
cle by Mouse from the Conformal Map menu. After
selecting Choose Line by Mouse, the preimage view
will appear, and you should press the mouse to select
one point of your line, and then drag to a different
point to select the second point. Immediately after
you release the mouse at the second point, the line
will be drawn in red. After a second the image view
will return, and the image curve of the line you chose
will be drawn , also in red. For a circle the procedure
is the same, with the first mouse point establishing
the center and the second some point on the circum-
ference. Circles and their images are drawn in green.

If you click and drag then a conformal map image will
follow the mouse around. If you now depress the Shift
key and move the cursor up or down then the con-
formal map image gets smaller or larger. Morever, if
you hold down Command and then drag out a rect-
angle in the usual Mac way, then when you release
the mouse (with Command still down) your selection
rectangle will zoom to the entire window.

3



The ATOs in this category are highly cross-referenced
and taken together provide an abbreviated intoduc-
tion to conformal mapping. Start by selecting z �→ z2

from the Conformal Map menu, then select About
This Object from the Documentation menu (or click
the ATO button in the small Special ATO! window),
and then start experimenting with the various sug-
gestions you will find there and in th ATOs of other
conformal maps that are nentioned there.

Many of the pre-programmed examples in this cat-
egory have carefully tailored default morphs. The
polynomial z �→ z2 is deformed to the identity by
varying the exponent from 2 to 1. In a number of
other cases, morphing also defaults to a deformation
between the identity map and the selected map. For
example The fractional linear map z �→ (z−1)/(z+1)
is deformed through fractional linear maps to the
identity and thereby shows that polar coordinates
look the same at 0 and ∞. The exponential map
is actually implemented as exp(aaaz), where aaa is
a complex parameter, say aaa = a + ib. Note that
this amounts to precomposing z �→ exp(z) with the
map that stretches z by a factor r =

√
a2 + b2 and

rotates it by an angle θ = arctan(b/a). In the default

4



morph, a is 1 and b varies from 0 to 0.4, so the stan-
dard parameter lines—circles and straight lines—are
gradually deformed into spirals.

The User Defined... dialog is a little different for this
category than for the categories dealing with real-
valued objects. At the top there is a box, pointed to
on the left by “z −−−> ”. In this box you should fill
in a formula for the function of the complex variable
z that you wish to study. This formula—which de-
faults to that for a general polynomial of degree five,
aa + bb ∗ z + cc ∗ z2 + dd ∗ z3 + ee ∗ z4 + ff ∗ z5—can
involve not only z, but also nine complex parameters,
aa, bb, cc, . . . , ii, which for convenience can be set in
this same dialog. (They may also be set using the
Set Parameters... item of the Settings menu. ) What
you are really setting in this dialog are expressions
for these parameters, not the parameters themselves,
which are evaluated from the expressions when you
dismiss the dialog. This means that you can for ex-
ample use the expression π +e∗ i in the box for aa to
give it the value 3.14159+2.71828i. (You get the sym-
bol π by typing Option-p—but you can also write pi
if you prefer.) (Note that this explains why we have
chosen to use aa, bb, cc, . . . instead of simply a, b, c, . . .

5



for the names of the nine parameters—it was to avoid
conflicting with e = 2.71828 . . . and i =

√
−1.) The

expressions for the parameters are evaluated in al-
phabetic order, which means you will get what you
expect if you set aa to 1, bb to 2 and cc to aa+bb (but
setting aa to bb + cc and bb to 1 and cc to 2 won’t
work.)

Built-in complex functions available for creating the
expression for the conformal mapping function are:
sin, cos, tan, cot, csc, sec, sinh, cosh, tanh, coth arc-
sin, arccos, arctan, arccot, ln, exp, sqrt,cubert (the
cube root), sn, cn, dn, Re, Im, Arg, abs, conj, round,
and trunc. Some of these need a little explaining.
Many of them are multiple-valued, and we have tried
to make the “standard” branch-cuts. (In particular,
the arg and ln function have branch cuts along the
negative real axis). The seemingly real-valued func-
tions Re, Im, Arg, abs actually are complex with zero
imaginary part. The function abs is the modulus
function and conj is complex conjugation. Round and
trunc apply themselves to both the real and imagi-
nary parts of their arguments. The functions sn, cn,
and dn are the usual Jacobi elliptic functions. They
depend on a parameter, the modulus, usually denoted

6



by m. The value of m can be set in the same dialog
as the parameters aa, bb, cc, . . . , ii.

Note that Karcher’s more symmetrically normalized
elliptic functions are included in the pre-programmed
examples. For these, the modulus is not restricted
to be real, which is to say that they are defined on
tori, of all conformal types, not just the rectangular
tori. The standard morphs of these elliptic functions
emphasize how the sphere is covered by (spherically)
congruent images of pieces that are 1/8th of the torus.

The complex expression parser and evaluator, like the
real one, was written by David Eck. In fact, at my
request , David modified his real expression unit to
handle complex expressions, and I cannot thank him
enough for doing me this favor at a time when he was
also very busy with his own work.

7


