Math 162B: Lecture Notes on Curves and Surfaces in R?, Part II
by Chuu-Lian Terng, Spring quarter 2005
Department of Mathematics, University of California at Irvine

1. Review

A parametrized surface is a smooth map f : O — R3 such that f,, (p), fe, (D)
are linearly independent for all p € O, where O is an open subset of R3.
The tangent plane T'f), at f(p) is spanned by f;,(p) and fy,(p). The first
fundamental form is

I = giida? + 2g12dwidas + goadas,
where
ng = fCCZ . f:tj)
the dot product.
The map N : O — R3 defined by

Jar X fas
| far % fao

is smooth, has unit length, and is perpendicular to the tangent plane of f,
and we call N the unit normal vector field of f. The shape operator A, of
f at po € O is the linear map from 7'fp, to T'fp, defined by

Apo(f2;(po)) = =N, (po), i=1,2.
So If v = afs,(po) + bfas (o), then
Apy(v1) = —aNz, (po) — bNz, (po)-
We proved in 162A that

N =

Proposition 1.0.1. The shape operator Ap, : T fp, — T fp, s a self-adjoint
operator, i.€.,

Apo(v1) - v2 = v1 - Ap,(v2)
for all vi,ve € T'fp,.

The eigenvalues and unit eigenvectors of the shape operator are called the
principal curvatures and principal directions of the parametrized surface f.
We use ki, ko to denote the principal curvature functions. The Gaussian
curvature and mean curvature are defined by

K =kiko, H =ky+ ko.

A point f(pg) is umbilic if the principal curvatures ki(po) = ka2(po), i.e.,
the shape operator A, is equal to a scalar times the identity map of the
tangent plane T'f,.
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The second fundamental form II, is a symmetric bilinear form on T'f),
associated to the shape operator A4,, i.e.,

Hp(’Ul,’Ug) = Ap(vl) - V2
for v1,v2 € T'f,. We denote II by
II = ﬂlldm% + 2019dx1dxo + KQQdZ'%,

where
&j = A(fxz) ’ f:fcj = _in ) f:rj =N- fzzzj
This means that if v; = a; fz, + b; fz, for ¢ = 1,2, then
H(Ula U2) = l11a1a2 + 612(01132 + (12()1) + l99b1bs.

The Gaussian curvature and mean curvature written in terms of I, IT are

. det(&j)
det(gij)’
2 1
H = G0 = ———(gazl11 — 2912612 + g1122),
20 el |
where () = )™ = s (7, o0

A surface f : O — R3 is said to be parametrized by lines of curvature
coordinates if g12 = ¢12 = 0, in other words, f;,, fz, are perpendicular and
are eigenvectors of the shape operator. We know from 162A that

Theorem 1.0.2. If pg is not an umbilic point of a surface f : O — R3, then
we can change coordinate locally so that the surface is parametrized by line
of curvature coordinates, i.e., there exists an open subset Og of O containing
po, an open subset O1 of R?, a diffeomorphism ¢ : O1 — Oq such that hy,,
hy, are eigenvectors of the shape operator, where h = f o ¢.

Suppose f : O — R? is parametrized by line of curvature coordinates. We
write g11 = A%, gos = A%. Then we have

[ = A3da? + A2dx3, 11 = {y1da? + lyedas.

The principal curvature ki, ko, Gaussian curvature K, and the mean curva-
ture H written in line of curvature coordinates are given as follows:

11 lao
fp= AL gy =22
1 A%, 2 A%,
L1142
K=—— =kiko,
A2 A3
14 14
=212 _ 5 4k,

AT A
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We have proved that Aq, Ao, £11, 22 must satisfy the Gauss-Codazzi equa-

tions:
Azy )y (A2)ey) i b
Az Zo Ay z1 - Ay Ay
(b1),, = Aoy Loy (1.0.1)
Aq /%2 A Ao
(G2), — Goln iy
2 /21 A Arc
If we set
S R
1 A17 2 A27

then the Gauss-Codazzi equations (1.0.1) can be written as

I, (1.02)
(r2)z; = (Ajllzl r

The first equation of the above system is called the Gauss equation, and the
second and third equations are called the Codazzi equations.

The Fundamental Theorem of Surfaces in R? states that: Suppose Ay, Ao, {11, lao
are smooth functions from O to R satisfying the Gauss-Codazzi equations
(1.0.1). Then given pg € O, qo € R3, and vy, vs,v3 an orthonormal basis
of R3, there exists an open subset Oy containing py and a unique smooth
immersion f : Oy — R3 such that the first and second fundamental form of
f are

I = A2de? + A2dx3, 11 =0y da? + £y, dx3,

f(po) = qo, v1 = leA%(fO), and vy = fza%(fo). Moreover, if two surfaces f,h :

O — R3 have the same I,1I, then they are congruent, i.e., there is a rigid
motion ¢ of R3 such that h = ¢ o f.

2. SURFACES IN R? wiTH K = —1 AND SGE

In geometry we are often interested in understanding geometric objects
whose invariants are of simplest kind. For example, in plane geometry we
have many theorems for equilateral, isoceles, and right triangles. The Guas-
sian and mean curvatures are the simplest kind of invariants for surfaces in
R3, so it is natural to study the geometry of surfaces in R? whose K or H
are constants.

In this section, we will show the existence of Tchbyshef line of curvature
coordinates for surfaces in R?® with K = —1, and we also show that there is
a one-to-one correspondence between solutions of the sine-Gordon equation

Quyz; — Quomy = SINGCOSQ SGE

and surfaces in R? with K = —1 up to rigid motions.
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Theorem 2.0.3. If a surface in R® has K = —1, then locally there exists
line of curvature parametrization such that the two fundamental forms are

I = cos?q da? +sin ¢ dz3, 11 =singcosq(dz? — dz3)

for some function q. Moreover, the Gauss-Codazzi equation is the sine-
Gordon equation

Quyzy — Guazy = SINGCOSQ. SGE  (2.0.3)

Proof. Since K = k1ko = —1, ky is never equal to ko. So there exists line of
curvature parametrization locally. Thus we may assume that

I = A3da? + Aldx3, 11 = {y1da? + lyadas.
Since K = k1ko = —1, so there exists a function ¢ such that
ki1 =tanq, ki = —cotgq
(g =tan"1 k). But k; = b1y = 2 4o

7%7 - Tga
(11
T = Af = klAl = tanq Al,
1
o2
ro = L koAs = —cotq As.
2

We will use the first Codazzi equation to prove that 2% is a function of x;
alone. It suffices to prove that <2—11>m2 = 0. But by the second equation of
(1.0.2), we have

(r1)ay = (A1 tanq)a, = (A1), tang + Ay sec® q qa,

= (Afllim ro = —(%1;1212142 cot g = —(Ay),, cotq.
Thus
(A1), (tan g + cot ) = — Ay sec? ¢ qq,,
But tanq + cot ¢ = Sinqlcosq, so we get

(A1)z,  sing

Ay cosq

Ty

This implies that (In A; — Incosq),, = 0, hence (ln C‘é;q) = 0. It follows
2
Aq

g s a function of x1 alone, say ¢1(x1) for some one
variable function ¢;. So we have proved that

AL _ ), (2.0.4)
cos q

from calculus that In

Similarly, we use the third equation of (1.0.2) to conclude that
Ay

sin q

= ¢o2(72) (2.0.5)

for some one variable function cs.



Define z; as a function of z; alone for ¢ = 1,2 such that

di; _ ci(z1) _ ecg(;tg).

an az2
d.%’l ’ d.%’g
Then (z1,z2) — (Z1,Z2) is a local diffeomorphism, and there is a local

inverse, i.e., we can write x1, xo as functions of 21, Z2. Next we compute the
two fundamental forms in (%, Z2) coordinate. Since

ai’i N 83;1 d:IN,’i

= f:l?ie_q(xi)7

gij = fjl 'fij - e_ci(mi)—C]'((Ej)gij'
Use (2.0.4) and (2.0.5) in the following computations:

2
g1 = gue 2 = Afe2(m) = < = > = cos’q,

eCl (z1)

g12 =0,

A \2
Goo = gooe22(72) = AZem2e2(w2) = (e@(ig)) = sin’q.

This shows that I = cos? gd7? + sin? qd3.
To compute II, we note that

(11 = k1 A? = tan g cos? ¢ = sin g cos g,
l1 =0

5722 = kyi% = —cotgq sin? q = —sinqcosgq.

So II = singcosq (dz? — dz3 and (z1, ) are line of curvature coordinate
system.
To check the G-C equation, we compute

i (1 sin g cos g

T = = ———— =s5sing,
L Ay cos q q
- ly;  —sin qcos q
Tg= = = ————= = —C0sq,
As sin g
(A1)e, _ —8inG qu, _ _q
Ao sin q w2
(A2)561 _ COS (G Gz _
Aq cos q o

The Codazzi equations (the second and the third equations of (1.0.2)) do

not give any extra condition on ¢. The Gauss equation (the first equation
of (1.0.2) gives SGE. O

As a consequence of the Fundamental Theorem of Surfaces, we have
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Theorem 2.0.4. Let O be an open disk in R%, and ¢ : O — R a solution
of SGE such that q(x1,22) € (0,%). Then given zg € O, po € R3, and an
orthonormal basis {vi,va,v3} of R3, there exists a unique surface f : O — R3
such that its fundamental forms are

I=cos?q dx% + sin? ¢ d:r%,
and f(xo) = po, [z, (x0) = cosq(zo)v1, fu,(xo) = sing(zg)ve.

In other words, we have proved that there is a one-to-one correspondence
between solutions of SGE whose image lies in the interval (0, §) and a surface
in R? with K = —1 modulo rigid motions.

Next we review the proof of the Fundamental Theorem of Surfaces here,
and will see that when we do not assume any condition on the image of
a solution ¢ we still can get a smooth map f, but now f fails to be an
immersion at points p where sin ¢(p) cos ¢(p) = 0, i.e., when ¢ = % for some
integer n. To get the immersion f, we need to solve the following first order
equation (see 162A Lecture Notes):

A1 0 7(141)22 —T1

Az
(frer,e2,€3)0, = (e1,€2,€3) | 0O _(A/IXiIQ 0 0
1 0 0
2.0.6)
(A2)e (

0 0 — 511 1 0

(f7 61762763)1'2 = (@1,62,63) A2 % 0 —
0 0 T 0

In general, if A; vanishes at xg, then the right hand side is not continuous
at xg, so the above equation can not be solved in a neighborhood of zg. But

in the case for surfaces with K = —1, the trouble terms % = —(Qq, and
% = ¢z, are both well-defined smooth maps even when A; or A vanish
at some points. So (2.0.6) becomes
( cosq 0 —qz, —sing
(f761562563)561 — (61762763) 0 qzo 0 0
0 i 0 0
S (2.0.7)
0 0 —qz, 0
(f7 61762763)1'2 — (61762763) Sinq qxq 0 Cos q
L 0 0 —cosq 0

Since the right hand side is smooth, by Frobenius Theorem this system is
solvable. So we obtain a unique solution (f, ey, e2, e3) such that the initial
data at xg is (po, v1,v2,v3). Since f;, = cosqe; and f,, = sinq ez, the map
f is an immersion if and only if sin g cos ¢ # 0, i.e., when ¢(p) # %ﬁ for some
integer k. At points where ¢(p) = %”, the map f is still smooth at those
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points, but the rank of the Jacobian matrix of f at those points is 1. We
call such points a cusp singularity of f.

Remark. If we modify the MatLab project for the Fundamental Theorem of
Surfaces in line of curvature coordinates by using (2.0.7), then the program
should generate surfaces with K = —1 with cusp singularities when we input
a solution of SGE.

3. TCHBYSHEF ASYMPTOTIC COORDINATES FOR K = —1 SURFACES

2y

The asymptotic lines for the hyperbola &5 — 33

Z—j = 0. A quadratic curve ax? + 2bxy + cy?> = 1 represents a hyperbola if

b2 — dac > 0, i.e., if det ((Z g) < 0. We call the directions of the two lines

given by ax? + 2bxy + cy? = 0 the asymptotic directions for the quadratic

form ax? 4 2bxy + cy?. The second fundamental form of a surface f at
_ det(4;)
N det(gi;)
and det(gi;) > 0, det(¢;;) < 0 if and only if K(p) < 0. In particular, if
K (pg) < 0, then there exists two linearly independent aysmptotic directions

for the quadratic form II,, .

= 1 are given by 2—; —

point p is a quadratic form on the tangent plane T'f,. Since K(p)

Definition 3.0.5. A non-zero tangent vector v € T'fy, is asymptotic if
I, (v,v) = 0. A parametrized surface f : O — R3 is parametrized by
asymptotic coordinates if £1; = f99 = 0, i.e., both f;, and f,, are asymptotic
vectors.

Suppose f : O — R3 is the Tchbyshef line of curvature parametrization
for a surface with K = —1 with

I = cos® gda? + sin? dr3, 11 =singcosq(da? — dal).
A tangent vector v = aj fy, + aafs, is asymptotic if
(v, v) = singcosq (a? — a3) = 0,

or equivalently, a? = a3. So vy = fy, + fu, and vg = fy, — fz, are asymptotic
vectors. If we make the following change of coordinates

s = xl—gm’
t — 55153727
then by the Chain rule fs = fi, + fu, and f; = fu; — fu,- SO

f(37t) = f($1(8,7f),$2(8,t)) = f(s +t,5— t)

is an asymptotic parametrization. We compute I, IT next. Since
fx1'fx1 :COSQCL fx1'f;t2:07 fxz'fzngin2Q7
§11 = fs : fs = (fxl + fxz) : (f:r:1 + fxz) = COS2Q+ Sin2q =1L
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Similar computation gives

glg = fs . ft = COS2(]7 QQQ =1.
As a consequence, we see that the angle between the asymptotic vectors is

2q. We have proved that fs, ft are asymptotic vectors, hence ¢1; = f99 = 0.
It remains to compute £15. Since

f361361'N:_fIQIQ'N:SinqCOS% fxla:Q'NZOy
we have

g12 = fst'N = (fxl+fx2)x1_(fx1+fx2)x2 = (fxlzl_f:tgccg)'N = 2SinqCOSQ-

So the fundamental form in (s,t) coordinate becomes
I =ds®> 4 2cos(2q)ds dt + dt?, 11 =4sinqcosqds dt = 2sin(2q)ds dt.

We call (s,t) the Tchbyshef asymptotic coordinate system (parametrization).
Note that g satisfies the SGE. We want to write the SGE in (s,t) coordi-
nates. By Chain rule, we have

1 1
Uy = 5(“8 +up), Ugy, = 5(“8 — uy),

SO qzyx1 — Qroxs = Gst- Thus
Qst = singqcosgq.
To summarize, we have proved that

Theorem 3.0.6. Locally there exists an asymptotic parametrization for a
surface with K = —1 such that

I =ds? +2cos(2q)ds dt + dt?>, 11 =4singcosqds dt = 2sin(2q)ds dt,

where 2q is the angle between the asymptotic directions. Moreover, the
Gauss-Codazzi equation is

Qst = singcosgq. SGE

4. CHANGE OF PARAMETRIZATIONS

We will show that although the two fundamental forms look different
when we use different parametrization of the same surface, they are the
same symmetric bilinear forms. To see this, we review some linear algebra
and material we taught in 162A, Let V' be a vector space, and {v1,...,v,}
a basis of V. It is easy to check that the space V* of all linear maps from V'
to R is again a vector space. Now let v denote the linear map from V' to R
such that

. 1, ifi=j,

forl1 <i<n.



Exercise 4.0.1. Prove that {v],...,v}} is a basis of V*.

Suppose £1,f5 : V — R are linear maps. We define /1 ® 5 : V xV — R
by
b1 ® La(&,m) = €1(§)02(n)
for all £,m € V. Let £145 : V x V — R denote the bilinear map defined by

1
l1ly = 5(51 ®ly + Ly ® 61)7

i.e., 5152(5,77) = %(£1(€)€2(n) +£2(§)£1(77))'

Exercise 4.0.2. Prove that

(1) 41 ® €5 is bilinear.
(2) £105 is symmetric bilinear.

Exercise 4.0.3. Let b: V x V — R be a bilinear map, v1,...,v, a basis of
V, oY, ..., vy dual basis of V*, and b;; = b(v;, vy).
(1) Prove that b= 737", bjjv; ®v].
) Prove that b is symmetric if and only if b;; = bj; for all 1 <4, j < n.

(2
(3) Prove that if b is symmetric then b= 371", b;jv}v}.

Suppose f : O — R3 is a parametrized surface. The first fundamental
form I, : Tf, x Tf, — R is defined by I,(£,n) = £ - n the dot product for
all §,n € T'f,. It is easy to check that I, is a symmetric bilinear map. Note
that {fz, (p), f2,(p)} is a basis of the tangent plane T'f,. Let dx1, dzs be the
dual basis of T'f;. It follows from the above exercise that

I = g11da? + 2g19dxdxy + gooda,

where g;; = fu, - fz;. Since I, is defined without parametrization I,,(£,n) =
& - n, different parametrizations will give the same I.
The unit normal vector field to f is the map from O to the unit sphere

S2:
Jaor X fas
N2 = 1 Sr

(N is also called the Gauss-map of the surface. The shape operator A, is the
self-adjoint operator from T'f,, to T'f, defined by Ap(fz;) = —Nz,. Now we
change parametrization of the surface by a diffeomorphism = = z(y) : O; —
O, ie., we use f(y) = f(x(y)) as a parametrization of the same surface. By
definition, the shape operator A for the new parametrization is the linear
operator defined by

A(fyz) = —Ny,.
We will show that A and A are the same. Because by Chain rule, we have

8u_&8x1+%8x2
dy;  Ox1 Oy;  Oxo Oy;
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So

- ON ox Oxo
A(f,.) = =—|— N —= N, .
(Fu) 0yi (3.%' T 0yi m)

However, A(f,,) = A (g—’; fur + g—?fIQ) and A is linear, we see that

ox ox
A(fyz) = - <ay1 Nx1 + a;Nm) s

which is equal to A( fy;)- This shows that the shape operator does not
depend on the choice of parametrization of a surface.

The second fundamental form is the bilinear form associated to the shape
operator:

1,(§,m) = Ap(&) - n

forall §,n € T'f,. Since the shape opeartor is independent of parametrization
of the surface, so is II. Note that the mean curvature H and the Gaussian
curvature K are the trace and the determinant of the shape operator. This
shows that H and K are well-defined function on the surface, independent
of parametrizations.

5. CALCULUS OF VARIATIONS OF ONE VARIABLE

In this section, C'! means continuously differentiable. Let C*(a, b], R?)
denote the space of all C!* maps « : [a,b] — R? (i.e., x is a differentiable and
its derivative 2’ is continuous). Fix po,qo € R?, let C1([a,b], R?),, 4, denote
the set of all z € C([a, b], R?) such that z(a) = py and z(b) = qo.

A function J : C*([a,b], R?),,.4 — R is called a a calculus of variations
functional if it has the form

b
() = JE () = / L(t, (t), 2/ (1)) dt,

where

L:la,b] xR*xR* - R
is a C! map. We call L the Lagrangian function associated to the functional
J.

To motivate the definitions of directional derivative and critical points of
J, we review these definitions for f : R™ — R. The directional derivative of
f at po in the direction v is d%‘s:oﬂpo + sv). A point pg is a critical point
of fif g—i(po) =0forall 1 <i<n. Given v = (v1,...,v,), the directional
derivative

d )
Dfolpo) = | flpo+sv) = > oz, (po)vi.

5=0 i=1

So the following statements are equivalent:
(i) po is a critical point of f,
(ii) all directional derivatives of f at py are zero,
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(i) £ «—of(o(s)) = 0 for all smooth curve o : (—¢,¢) — R" with o(0) =
Po- equation
The functional J is a function on the vector space C([a,b], R?),, 4, SO

we can define directional derivatives and critical points of J in the same
manner as for f: R"™ — R.

The directional derivative of JL.

Let 20 = (29, 29) € C([a, b],R?)p, 40, and h = (h1, ha) € C([a, b],R?)q.0,
i.e., h(a) = h(b) = 0. Note that 2* = 29 + sh is in C([a, b], R?),, 4, for all
s € R. Let us find the derivative of J%(2*) with respect to s at s = 0:

d

ds

b
JE(a%) =/ L(t,z°(t), (z°)'(t)) dt

/bd
), ds

s=0

L(t, 2°(t) + sh(t), (z°)'(t) + sh'(t)) dt, by chain rule,
s=0

i@, 20(1), (2°)'(£) ha(t)

+ 5 (20(8), (27 ()R (1) + %(t,xo(t), (%) ()R (t) dt.
1 2

b
Next we want to use integration by part, f; fWgt)dt = f(t)g(t)| —

a

fab f(t)g'(t) dt, to change h} to h; in the above integration. First note that
since hi(a) = hi(b) =0 for i = 1,2, we have

bd (0L
/a Ch<Mhi(t)> dt =0,

b /
oL oL

and hence

So

b
O (020, ) (G0 +
a 1

O (1.a°0), (Y ()h(t) d
2

Thus the formula for the derivational derivative of J at z¥ in the direction

h is
brar AL\’ oL oL\’
L/ s\ __ = =
7 @)= | (aan (axa>>h1+<am2 <ax;)>h2 .

d
(5.0.8)

ds
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20 is called a critical point of J if this directional derivatives is zero for all

choices of h € C*([a, b], R?)g 9. This will certainly be the case if the following
so-called Fuler-Lagrange equation is satisfied:

oL d [OL\
oz d (a:c'> y t=12 (5:09)

The following is the fundmental lemma of calculus of variations:

Lemma 5.0.7. Let f = (f1,..., fa) : [a,b] — R™ be a C* map. Suppose
that [* S0 fi(t)hi(t) dt = 0 for all C* maps h = (ha, ..., hy) : [a,b] — R”
with h(a) = h(b) = 0. Then f =0.

Proof. We prove this by contracdition. It suffices to prove the case when
n = 1. Suppose f is not the zero function, there there exists ¢ € (a,b)
such that f(c) # 0. Say f(c) > 0. Then there exists ¢ > 0 such that
(c—¢€,c+¢€) C (a,b) and f(t) > 0 for all t € (¢ — €, ¢ + ¢), Choose a C!
function g : [a,b] — R such that ¢ > 0 on (¢ —€,c+€), g = 0 outside
[c —€,c+¢€|. Then

b c+e
[ g a= [ st de>o
which contradicts to the assumption that fab f(Hh(t) dt = 0 for all C' h
with h(a) = h(b) = 0. O
As a consequence of Lemma 5.0.7 and (5.0.8), we get

Theorem 5.0.8. z : [a,b] — R? is a critical point of J* if and only if x
satisfies the Euler-Lagrage equation (5.0.9).

Example 5.0.9. Let

Then L(t, 21,29, 2}, 25) = 1((x})? + (25)?). The Euler-Lagrange equation
for J is computed as follows:

L L\’
ot o= (3) ~ear -

In other words, the Euler-Lagrange equation for J is 2/ = 0 for i = 1,2. So
x(t) = co + c1t for some cg, c; € R?) i.e., x is a straight line. Since x(a) = pg

and 2(b) = qo, (t) = po + =2 (g9 — po).

Example 5.0.10. Newtonian mechanics in R?

We consider a particle p of mass m moving in the plane R? under Newton’s
Laws of Motion. In physics it is shown that Newton’s Third Law implies
that the force F' = (F}, F») acting on p is derivable from a potential V|, i.e.,
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there is a smooth function V : R? — R such that F; = _27‘0/1’ fori=1,2 (i.e.,
F = —VYV). The kinetic energy function is
m
K(&') = 5 () + (h)?).
Define the Lagrange
m
L=K-V= 5((90/1)2 + (25)%) = V(@1 22).

The functional £(z) = f;’ L(x,2") dt is called the action in physics. Since
oL o0V 0L

/
=— , o = maj,
ox; oz;” O !
the Euler-Lagrange equation is
ov
o = (mal) = ma,
(2
o oV
ma! = — = F;.
! 8%’2 ’

In other words, we have proved that the Euler-Lagrange equation for the

action functional £ = f;K — Vdt is the Newton’s equation F' = ma, i.e.,
the force F' is equal to the mass times the acceleration.

6. INITIAL VALUE PROBLEM FOR SECOND ORDER ODES

A system of second order ODEs is of the form
o = filt,z1, ... xn, 2, 1), 1<i<n. (6.0.10)

rr'n

This can be solved using the existence and uniqueness of systems of first
order ODE by introducting new variables: Consider the following system of
first order ODE:
/ ,
{xf — U lsi<n, (6.0.11)
v, = filt,xt, .. 20, y1, - Yn), 1 <i<n.

It is easy to see that if z(t) = (x1(t), ..., zn(t)) is a solution of (6.0.10), then
(x,y) = (z,2") is a solution of (6.0.11). Conversely, if (z,y) is a solution of
(6.0.11), then z is a solution of (6.0.10). By the uniqueness of ODE, we know
that given initial condition pg, gy € R™, there exists a unique solution (z,y)
of (6.0.11) such that x(0) = pg and y(0) = go. Thus given pg, go € R, there
exists a unique solution z(t) of the second order system (6.0.10) such that
x(0) = po and 2’(0) = go. In other words, to solve the initial value problem
for the second order ODE system (6.0.10) we need to give the initial position
x(0) and initial velocity 2/(0).
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7. ENERGY FUNCTIONAL

Let f: O — R? be a parametrized surface, and I = Zij:l gijdzr;dx; the
first fundamental form. The energy functional £ : C*([a,b], O)py.q0 — R is

b 2
E(x) = / S gig (w1 (1), 22 (1)) (1) 1) d,

@ jj=1

ie.,

b
5(93)=/ 1Y/ ()]2dt,  where y(t) = f(x(1)).

We want to compute the Euler-Lagrange equation for £. Before we do the
general computation, let us do the following simple example:

Example 7.0.11. (Energy functional on S?) We use the spherical
parametrization of S2:

f(@,0) = (sin ¢ cos B, sin psin @, cos ¢).
Then
I = d¢? + sin® ¢ do?.
The energy Lagrangian for S? is E = (¢')? + sin? ¢ (¢')2. Note

oFE

¢
OE\' INEER SV
(55) = oy =20
oE
50 =
<g§;> = (2sin? ¢ #') = 4singcos ¢ ¢ 6 + 2sin’ ¢ 0"

= 2sin¢gcos ¢ (0)?,
0,

So the E-L equation is

@" = sin ¢ cos ¢(6')?,
4sinpcosd ¢’ + 2sin® ¢ 0" = 0,

i.e.,
{(;5” =singcos ¢ (0')?,

0" = —2522 /0.
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Next we compute the E-L for the energy functional for an arbitrary surface
f. Since £ =37, gij(z1, v2) 7727,

E kCE IL' .’L’
85[3]€ glj k&g

/
(52) = (20 ) =2 Somton + Swst ]
,m i

691]

. So the E-L equation is

2 Z gzkmu +2 Z Gik ml'zl'm Z gij, kZU :L' =0.

where g;;x =

But

! !
E gzkmx § gzk,ﬁ” ‘: E :gjki"pjxi
5,J

(Here we replace m by j to get the first identity, and then exchange i, j to
get the second identity). So

2zgik7mx;‘x;n = Z(szz,y + 9jk, i) j?
,m 2,7
and hence the E-L equation for £ can be written as

2Zgzkx + Z gkz,] + 9ik,i — Gijk )x;x; =0,
7j

ie.,

Z gzkl‘ [+ - Z 9kij + 9iki — 9ij, k)x;l' 0.
7]

Recall that we used the following notation
[ij, k| := Gkij + Gjki — Gijk

when we derived of the G-C equation in general coordinates in 162A. Use
this notation, the E-L equation for the energy functional can be written as

1 .
2 ginwl + 3 g ‘ [ij, klaia); =
7 1,7

We want to write this system of ODE in the form of (6.0.11). We can do
this as follows: Let G denote the 2 x 2 matrix (g;;), and g* the ij-th entry
of the inverse matrix G~!. Multiply the above equation by ¢’ then sum

over k to get
ngggzkiz” Lz nge ij, k ; -0
0,5,k
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Note that G and G~! are symmetric matrices, and the i/-th entry of GG~}
is ) gitg™. But GG~ =1, so Dok gig™ = ;. Then we get

1 -
Z@ﬂ;’ t3 Ecgk [ig, k]zjz =0,
1 27.]7

Recall that we use the following notation in the G-C equation:
¢ 1 ke[ -
Ly = 3 Zg (i, k].
k
So the E-L equation for the energy functional can be written as

$/Z/ + ZFfjx;x; =0, f=1,2. (7.0.12)
i7j

We summarize what we have proved below:

Theorem 7.0.12. z : [a,b] — R? is a critical point of the energy functional
E if and only if x satisifes (7.0.12).

Next we want to prove that if x is a critical point of the energy functional
for the surface f : O — R3, then the curve v(t) = f(x(t)) is travelled at
constant speed:

Theorem 7.0.13. If x is a critical point of the energy functional £, then

E(z) = Zgij(fv(t))wé(t)wz(t) =Y Ol

is a constant, where y(t) = f(x(t)).

Proof. 1t suffices to prove that (3, ; gij(z)zj2;) = 0. But

AV R A /Wi R/
(E gisz‘xj) = § 9ij kTpTiT; + E 9ijT; T + E Gij i -
(2] (2] (2%]

i7j7k

But x satisfies the E-L equation

k
12
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So

/

)
Zgzjxix]
.3
A )
:E Gij kTRT;T; — Z 9ij xkxmx] E 9ijT; E F mTkTm

1,5,k i,5,k,m
/
= Zgij,k@z' Z Gij xkx gzyka zxkx
1,5,k i,5,k,m
= Zgwk:c;x;xz, — Z gmjfﬂx;x;$; - gszﬁx;x;ﬁf
1,5,k i,5,k,m

:Z Gijk — nggg [ki, £] — gng i, €] | wiajai

4,5,k
4,5,k

- Z Gijk — ]ﬂ j] [kjv ]) xk
0,5,k

= (gijk — gzg K+ Gk — Gkij + Gjik + Gikg — Gji)) vy, = 0.

1,3,k

(From the second line to the third line, we interchange m,i of the second
term and m, j of the third term.) O

8. Arc length functional

Let f : O — R3 be a parametrized surface, ¥ = f(0), and I = Zij gijdx;dx;
the first fundamental of f. A smooth curve z : [a,b] — O gives rise to a
curve 7 = f oz on the surface ¥, and the arc length of v is

b b 2
- / V(@) dt = / S i (w(8) (1) (1) dt.

3,7=1

A curve v = fox on X is called a geodesic if x is a critical point of the
arc length functional £. Let E = Eij:l 9ij(x(t))x{(t)’;(t) denote the La-
grangian of the energy functional £. The E-L equation for the energy func-

tional & is
E E\’
gm = <g£,> , 1=1,2. (8.0.13)
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Let L denote the Lagrangian for the arc length functional £. Then L = VE.
The E-L equation for L is

WNE (oVE\
ox;  \ ozt )’

so the E-L equation for L is

1 O0F 1 oE\
() =12 8.0.14

V5 & = (vE ) (80.14
Proposition 8.0.14. Let f : O — R? be a parametrized surface. If x is
a critical point of the energy functional &£, then x is a critical point of the

arc length functional L. Conversely, if x is a critical point of L such that
|4 f(x(t))|| is constant, then x is a critical point of E.

Proof. By Theorem 7.0.13, E = Z?Fl 9ij(z(t))z}(t)z}(t) is a constant c.
Since x satisfies (8.0.13) and E is constant, = satisfies (8.0.14), so z is a

critical point of £. The converse is proved the same way. O

We want to prove below that if x : [a,b] — O is a critical point of £ and
t = t(s) is a diffeomorphism from [a, b] to [a, b], then Z(s) = z(t(s)) is also a
critical point of £. This follows from the following theorem:

Theorem 8.0.15. Let V' be a vector space, ¢ : V. — V a diffeomorphism,
and F : V. — R a smooth function. Suppose F o ¢~ = F. Thenpy €V is
a critical point of F' implies that ¢(po) is also a critical point of F'.

Proof. Note that pg is a critical point of F' if and only if % woF(z(t)) =0
for all smooth curve z : (—d,9) — V such that z(0) = pp. To prove that
¢(po) is a critical point, let y : (=d,6) — V be a smooth curve such that
y(0) = ¢(po). Then z = ¢! oy is a curve with z(0) = py. But

F(y(t)) = F(¢~ (y(t)) = F(x(t)),

SO

d

—|  Fylt)) =—| Fl(x(t

|, o) = 5| Fe)
which is zero because pgy is a critical point of F' and x is a curve with
x(0) = po. This proves that ¢(pg) is also a critical point of F. O

The condition F' = Fog~! is equivalent to F' = Fog because F (¢~ (4(x)))
F(¢(x)) implies that F'(z) = F(¢(z)).

The above Theorem says that if a function F' is invariant under a trans-
formation ¢, then ¢(pg) is a critical point of F' if py is.

Proposition 8.0.16. Let t = t(s) is a diffeomorphism from [a,b] to [a,b],
and ¢ : C([a,b],0) — C([a,b],0) defined by ¢(x)(s) = x(t(s)). Then if z°
is a critical point of L, then ¢(x°) is also a critical point of L.
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Proof. Note that y(t) = f(x(t)) and 4(s) = f(x(t(s))) trace out the same
curve on the surface 3. So the arc length of v and 4 are the same. This
proves that £(z) = L(¢(x)). By Theorem 8.0.15, ¢(2°) is a critical point of
L. O

Suppose 2V is a critical point of £ and the arc length of 4 = f(z2) is 4.
We claim that we can change parameter of 7° to a new parameter s such

that H H is the constant ;= . But

dy° dt
o e T [ AT T W]

so if we choose the new parameter s such that

it (
a_
ds (b —a)l| G

then H || ﬁ. This proves the claim. By Proposition 8.0.16, y%(s) =
z(t(s)) is a critical point of £. But ||-4 f(y°(s))]|| is constant, so by Propo-
sition 8.0.14, 3° is a critical point of £. This shows that to construct all
geodesics of the surface ¥, it suffices to solve the E-L equation (7.0.12) for
the energy functional £. Therefore we will call (7.0.12) the geodesic equation.

A curve v : [a,b] — R? is said to be parametrized proportional to its arc
length if its speed is constant, i.e., H 7|| is a constant for all t € [a, b].

We like to give a geometric calculatlon for the geodesic equation. Recall
that we proved in 162A that if f : @ — R? is a parametrized surface with
1= Zij gijdx;dr; and II = Zij l;jdx;drj, then

friw; = Dijfar + 15 fay + G N, (8.0.15)

where Fj»k = %Zm g"™[jk,m], and N the unit normal of f. We will use
(8.0.15) to give a simple criterion for a curve 7 = f o x on the surface f to
be a geodesic.

Theorem 8.0.17. Let v = f ox be a curve on the surface f that is
parametrized proportional to its arc length. Then 7 is a geodesic if and
only if v"(t) is normal to f at y(t) for all t. Moreover, if v is a geodesic
then
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Proof. Chain rule gives 7/ = Z f:piﬂféa and

Zfzziﬂj z ]+Z-f$z
:Z((ZFW €Ly j fmk
]

|
SIS

-5 (s s ) St
k
So +"(t) is normal if and only if
(s Z F”x;x; =0

for k = 1,2, i.e., x satisfies (7.0.12)7 or equivalently, v is a geodesic. (]

+ Lijaia N> + foi:n;'
i

—I—Ewa:’:c/ N) + foka:’k/
k

Example 8.0.18. We can use Theorem 8.0.17 to get geodesics of the unit
sphere in R3 easily by observing that if « is a great circle, then o is the
radial vector of the great circle, so o//(t) is the unit normal to S? at «(t).
This implies that (t) is normal to S?, by Theorem 8.0.17, « is a geodesic.

9. CALCULUS OF VARIATIONS OF TWO VARIABLE

Let O be an open subset of R? such that the boundary 00 is a smooth
curve, i.e., there is a smooth parametrization « : [a,b] — R? for 0. Let
v : 00 — R a fixed smooth function, and O = O U dO. Let C,(O,R)
denote the space of smooth functions u : O — R such that u |00 = 7.
A two variable Lagrangian is a smooth function L : O x R x R x R — R,

and the variational functional associated to the Lagrangian L is the map
J=JY:C,(O,R) — R defined by

~ [ [t ata. o) o) dody.

We will use x , Y, u, P, q to denote the variables of L, i.e., L = L(z,y,u,p,q).
A function u® : O — R is called a critical point of J 1f all the directional
derivatives of J at u® is zero, i.e.,
a4
ds
for all smooth h : O — R with h | 90 = 0. We will calculate the same way as
in the calculus of variations of one variable. Recall that in that calculation,

J(u® +sh) =0
s=0
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we need the fundamental lemma and the Fundamental Theorem of Calculus
of one variable. As we will see below that to calculate the condition that u? is
a critical point, we will need the two dimensional versions of the fundamental
lemma and of the Fundamental Theorem of Calculus.

Given a € R, let ¢, : R — R be the function defined by

0, x < a.

ba(z) = {exp(—(:v —a)7?), z>a,

Exercise 9.0.4. Prove that lim,_,,+ ¢4 (z) = 0, and the limits of derivatives
of ¢, of any order tends to zero as x — at. (This proves that ¢, is a smooth
function).

Exercise 9.0.5. Let ¢, : R — R be the map defined by ¢4(z) = ¢_o(—2).

Prove that
bz =S <
“ o, z>a.

Exercise 9.0.6. Given a < b, let h,p : R — R be the function defined by
hap(x) = ¢a(x)p(x). Prove that h,yp is smooth, h,p > 0 on (a,b) and is
zero outside (a,b).

Lemma 9.0.19. Suppose f : O — R is continuous, and

//Of(iﬂay)h(x,y) dzdy =0

for all h: O — R with h | 90 = 0. Then f = 0.

Proof. Suppose f is not identically zero. Then there exists (xo,y0) € O
such that f(zg,y0) # 0. We may assume that f(xg,y0) > 0. Since f is
continuous, there exists € > 0 such that f(z,y) > 0 for all (x,y) in the
square

D =A{(z,y) | |z —zo| <€y —yo| <e}
Let h,p be the smooth function constructed in the above Exercise, and
kp : R? — R the map defined by
kp(z,y) = hxo—e,xo+e(x)hyo—e,yo-l—e(y)'

It is easy to see that kp is smooth, kp(z,y) > 0 if (x,y) € D and is zero
outside D. In particular, hp | 0O = 0. But fhp is positive in O, so

//thD dacdy://thD dxdy,

which is positive because both f and hp are positive on D, a contradiction.
O
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Next we recall the Green’s formula, which can be viewed as the two di-
mensional version of the Fundamental Theorem of Calculus. First recall
that the line integral

j{ P(z,y) dz+ Q(z,y) dy
00

is computed as follows: Choose a parametrization of the boundary 00, say
a: [a,b] — R? with a(t) = (x(t),y(t)). Then

b
7g Pl de Qe dy = [ Pao.50)(0) + Q0.y(0)y (1) dr.

Theorem 9.0.20. (Green’s formula)
Let P,Q : O — R be smooth functions. Then

7{ P dx+Q dy://(—Pgﬁ-Qy) dzdy.
00 ]
Corollary 9.0.21. If P | 00 =0 and Q | 00 =0, then

//O(Px +Q,) dedy = 0.

(This is because the line integral is zero).
Next we compute the directional derivative of J at u in the direction h,
where u € CW((’),R) and h : O — R satisfying h | 00 = 0.

d

T J(u+ sh) = // z,y,u+ sh, (u+ sh)g, (u+ sh),) dedy
s=0 s=0
d

= — // L(x,y,u+ sh,uy + shy, uy + shy) dedy
ds|,_g ol

(x,y,u + sh,uy + shy, uy + shy) dxdy

ey
o ds|,_p

oL oL
_/A%(xayau7uxvuy)h(x7y>+%(xvyauvuiﬂauy)hf(x7y)

+ 5 — (@, 9, u, uz, uy) by (2, y) dady.

= L (), () e

+ (%h> — (0[/) h dzxdy.
0q y 0q Y

The Green’s formula implies that

oL oL oL oL
—h h) dedy=¢ =—hdy— ——h dz.
//o<3p >x (361 >y Y o or YT B
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Since h | 0O = 0, by Corollary 9.0.21 the right hand side is zero. So we get
oL

_ J(u 4 sh) = //O (gﬁ - <g§)z - <8q)y> h dzdy.

oL oL
aip 55: aip(mvgﬁuaufmuy) z?

<8L) <8L( )>
— | = =—(z,y,u, ug, u .
Jdq y Jq Y Y y

oL oL OL
to denote o and B to denote

We will use the conventional notation B

d

ds

Here

%' By Lemma 9.0.19, we get

Theorem 9.0.22. u is a critical point of J if and only if
oL oL oL
— — —|=—] =0. 9.0.16
5 (). <au> (5.0.16)

Equation (9.0.16) is called the Euler-Lagrange equation for J = J&.

Example 9.0.23. Let
1
J(u) = //02 ((ux)2 + (uy)Q) dxdy.

Then L(z,y,u,p,q) = :(p* + ¢%),
oL oL 0L

%— ) 670—]% %Zq.

To get the E-L equation, we need to substitute p = u, and ¢ = u,, so
0 — (ug)z — (uy)y =0, ie., the E-L equation is the Laplace equation

Uy + Uyy = 0.

Example 9.0.24. Let
J(u) = //Ui« + Ugy + Uz —cosu + (22 + y*)u drdy.
o

So L(z,y,u,p,q) = p* +pq + ¢* — cosu + (2> + y*)u, and
oL , 4. 0L oL
5y — Sinu— (27 +y7), op ~Xta G, =Pt
Substitue p = u, and g = uy to see that the E-L equation is
0=sinu— (22 + 4?) — (2uy + uy)z — (uz + 2uy)y =0
=sinu — (2 + y%) — (2ugs + Uyz + Uzy + 2Uyy)

= sinu — (22 + ¥%) — (2uay + 2y + 2uyy).
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Example 9.0.25. Let
J(u) = //(1 +u§ +u§)%
@]

So L(z,y,u,p,q) = (1 + p? + qQ)% and
oL oL
ou ' Op

The E-L equation is

o= 9L _ (9L _ (0oL
~ Ou op ), J0q Y

=0~ (a1 0 )" 2)s — (g (1 + 0 + ) 2),
=(1+u2+ ui)_?’/2 (1+ ui)um + (1 + ud)uy, — Uy gy gy ) -

1 OL 1
=p(1+p*+4¢°) 2, a712(1(1+292+q2) 2.

10. AREA FUNCTIONAL

Let u : O — R be a smooth function, and

f(z,y) = (z,y,u(z,y))
the graph of u. We have seen in 162A that the two fundamental forms for
f are
I=(1+u?2) de? + 2uzuy, dedy + (1 + ui) dyy?,

1
I=—— (um dz? + 2Uzy drdy + Uy, dy2,)

1+ ud +y?
and the mean curvature is
(14 u2)uyy — 2ugtiytgy + (1 + uf/)um

(14 u2 +u2)3/?

Compute directly to see that
det(gij) = (1 + ui)(l + U,Z) — (uxuy)2 =(1+ ui + uZ)
So the area of the graph of u (i.e., surface f) is

J(u)://ow/det(gij) d;cdy://o(1+u§+u§)1/2 dzdy.

We have computed the E-L equation for this functional in Example 9.0.25
and see that

d (1+ ug)uyy — 2UpUyUgy + (1 + u2) Uy
— J h) = — Y h dxd

:// —Hh dzdy.
o
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So the E-L equation for the area functional is H = 0. This gives another
geometric meaning of the mean curvature. In particular, the surface that
has minimum surface area among all surfaces in R? with a fixed boundary
must have zero mean curvature.

Definition 10.0.26. A surface in R3 is minimal if its mean curvature is
Zero.

Remark. It follows from physics that if we dip a closed wire frame into a
soap solution, then the soap film surface spanned by the wire frame when we
take out the frame must be minimal. So we sometimes call minimal surfaces
soap films.

11. MINIMAL SURFACES
11.1. Minimal surfaces and harmonic functions.

Definition 11.1.1. A surface f : O — R? is said to be parametrized by
isothermal coordinates if T = \?(x1,z2)(dx? + dx3), i.e., g11 = g2o and g12 =
0. Or equivalently,

fxl'f:pl:fxz'fmzy fxl'f;pzzo.

Theorem 11.1.2. Suppose f : O — R3 is parametrized by isothermal coor-
dinates with I = \2(dz? + dx3). Then

fCC1£E1 + fIQIQ — >\2HN7 (].].].1)
where H is the mean curvature and N s the unit normal vector field of f.

Proof. First we want to use the isothermal condition, fi, - fo, = fuy: fro = A2
and fz, - fz, = 0, to conclude that

(fxmm +fxgx2)'fxi =0, =12
which implies that fy,z, + fzo2, is parallel to the unit normal N of the
surface. To do this, we take derivatives of the isothermal condition:

(f:c1 : fm)xl =2fr121 o = (fxz ) fm)m = 22125 * fas
= 2((fx1 : fx2)962 = Ja fwzxz) = 2(0 L fl’zm) = —2fr0s * fa1s
8O (fayay + fagzs) * foy = 0. Similar calculation implies that
(f:mxl + fxzxz) “fao =0,
thus fy,4, + [z, must be parallel to N. But
fmix]- = Filjfml + P?jfxg + eijN7

where IT = ¢11dz? +2015dx1 dxg + loodr3 and F;k = % Yo g™ [jk, m]. There-
fore we have

Jorer + fogzs = (Z Fili)fml + (Z Fzzi)fm + (l11 + La2)N.
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But we have shown that fy, 2, + fz,2, is parallel to N, so the coefficients of
S, 0 fo,z, + fooa, are zero and we get

fCC1CE1 + fxzxz = (511 +€22)N- (1112)
Recall that the mean curvature H is given by the following formula

_ giilae — 212012 + g22l11

H - 9
det(gij)
so H = )‘2(181;;822) = Z“;\’;ﬁm, which implies that ¢1; 4+ f22 = A2 H. Substitute
this into (11.1.2) to get (11.1.1). O

Definition 11.1.3. A smooth function v : @ — R is called harmonic if
Upy gy + Upgzy = 0.

The operator A = 88—;2 + 88—;2 is called the Laplace operator and Au =
1 2
Ug 2, + Uzoae = 0 is called the Laplace equation.

Corollary 11.1.4. Suppose f = (u,v,w) : O — R3 is parametrized by
isothermal coordinates. Then the following statements are equivalent:
(1) f is minimal,

(2) friz1 + fazao = (0,0,0),
(3) u,v,w are harmonic functions.

Remark. We have seen that a surface f : O — R3 with H = 0 is a critical
point of the area functional. But this surface need not have minimum area
among all surfaces in R? that having the same boudary as f(O). However,
it is a theorem of PDE that if we take any small enough piece Q of f(O),
the surface €2 has the minimum area among all surfaces that have the same
boundary of €.

Example 11.1.5. (Caternoid)
Let a > 0 be a constant, and

f(z1,x2) = (acoshzy cosxy, acoshxgsinzy, axs).

A direct computation implies that T = a2 cosh? 2o (d2? +dx3), so f is isother-
mal parametrization. Compute directly to see that f; .z, + froz, = (0,0,0),
so by Corollary 11.1.4 f is minimal.

Example 11.1.6. (Helicoid)
Let a > 0 be a constant, and

f(z1,x9) = (sinhxg cos z1,sinh zg sinxy, x7).

A direct computation implies that I = a? cosh? zo(dz? + dz3) and fi,., +
frszs = (0,0,0). So f is minimal. Note that Helicoid and Caternoid have
the same first fundamental form!
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Example 11.1.7. (Enneper’s surface)

Let
xi{’ 2 ) 2 2 2
f(x1,22) = (21 — 3 + z125, T2 — 3 + moxy, 7] — 73).

Then I = (1 + 2% + 23)(d2? + dz3) and Af = (0,0,0). So f is minimal.

11.2. Linear conformal transformations of R2.

The plane R? can be viewed as C by identifying <§> with the complex

number z = x + iy. Let @ = a + ib be a fixed complex constant, and
M, : C — C the map defined by M,(z) = az, i.e.,

My (z +iy) = (a +ib)(z +iy) = (ax — by) + i(bx + ay).
If we use the identification of C with R2, then the map M, becomes T, :

R? — R2, where
T:U_ax—by_a—bx
*Ny) \bzx+ay) \b a y)®
In other words, the map M, given by multiplication by « on C is the map

T,, on R?, which is given by the multiplication by the matrix (Z _ab> . We

can study the geometry of T,, using complex numbers: First write a = re'?
in polar coordinate, i.e., 1o = Va2 + b? and tanfy = g. If z = re®, then
My(2) = az = rore@+9  In other words, the map T, maps a vector v by
first rotating v counterclockwise by angle 6y, then multiplying the length by
the factor rg.

Let £ (vi,v2) denote the angle from v; to va. If v; = rjewj, then

£ (1}1,1}2) = 92 — 91.

Exercise 11.2.1. Prove that if v;, v9 are orthonormal, then Ty, (v1)-To(v2) =
0 and [[Ta (01)|] = ||Ta(v2)]l-

The linear operator T, preserves angles and stretchs each vector by a
fixed amont rg. We call T,, a linear conformal transformation of R2.

Exercise 11.2.2. Suppose T : R? — R? is the linear map defined by

r(5) =0 o) ()

Let e; = , and eg = . Prove that if £ (T'(u),T(v)) = £ (u,v) and

(o y

||T(e1)|] = T(e2)||, then d = a and ¢ = —b, i.e.,, T is a linear conformal
transformation.
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If |of = 1, ie., a = €% = cosfy + isin by, then

7 (%) — costly —sinbp\ (x\  [xcosby— ysinby
*“\y/)  \sinfy cosby y)  \xsinfy+ ycosby

is the rotation by angle 6y. We call
cosfy —sinfy
sinfly cosby

the rotation matrix by angle 6.

11.3. Analytic functions, definitions and examples.

Definition 11.3.1. Let O be an open subset of C.

(1) Amap f: O — Cis analytic at zp if
i £ Z0 1) — f(20)

h—0 h

exists. We will use f/(zp) to denote the limit. The limit f’(zp) is
called the complex derivative of f at zy. Here the limit is taking for
complex number h — 0, i.e., given any € > 0, there exists 6 > 0 such

that if h € C and |h| < § then |f(z0 + h) — f(20)| < €.

(2) The map f : O — C is analytic if f is analytic at every point zy € O.

Given a function f: O — C, we can write f(z) = u(z,y) + iv(x,y) with
real valued functions u,v. We will call © and v the real and imaginary part

of f, and write u = Re(f) and v = Im(f).

Example 11.3.2. Let f(z) = 2z + iy = 252, It is easy to see that
f(r+is)— f(0) 2r+is {2, if s=0,r—0,
= —

T+ 18 r 418 1

, ifr=0,s—0.

So the limit of M does not exist, i.e., f is not analytic.

Example 11.3.3.
(1) Let f(z) = 2. Then
fle+h)—flz) _(24+h)—=

h N h
so f'(z) = 1.
(2) Let f(z) = 2". Then

f(z4+h)—f(z)  (z+h)"—2"

h h

_ Zn+nzn—1h+ n(n2—1) Zn_1h2+ U Y
h

— nznfl n(n — 1)2’”72}1 I hnfl N nznfl

as h — 0.
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So (") = nz""L.
(3) Let f(z) = €* = %W := %W = e%(cosx + isinz). Then 17?2 =
e*e?2. Since the Taylor series of e, cosy, and siny converges abso-

lutely,
(0] Zn
e -
-y
n=0
So
hol (+h+2 40— h
o1 _(theSee)-1_h
h h 2
which implies limy,_. ehT_l = 1. But
ez+h_ez _ zeh_e B ez(eh_l)
h N h N h ’

hence its limit is e* as h — 0. Thus (e*) = e*.

The addition formula, product formula, quotient formula, and the chain
rule for analytic functions can be proved in a similar way as for calculus of
one real variable.

We define ) ' , ,
elZ + 6712 . e’LZ _ 677,2
cosz=—— sing = ————
2 ’ 2i
Since e* is analytic, by the chain rule we have (e'*) = ie** and (e %) =
i ,—1Z
—ie "%,

Exercise 11.3.1. Prove that:

(1) (sinz)’ = cosz and (cos z)' = —sin 2.
(2) cos?z +sin?z = 1,
Define B B . .
e +e e* —e”
ho=ST6 " inhz= 5%
cosh z 5 sinh z 5

Exercise 11.3.2. Prove that

(1) cosh? z — sinh? z = 1,

(2) (coshz) = sinh z, (sinh z)’ = cosh z,

(3) cosh(iz) = cos z, sinh(iz) = isin z.
Theorem 11.3.4. Suppose f : O — C is analytic, and o, : (=9,5) — O
smooth curves intersect at pg = «(0) = 3(0). Then

£ (a'(0),6'(0)) = £ ((f 2 @)(0), (f 2 8)'(0)),
i.e., f preserves angles.

Proof. By the chain rule, (foa)'(0) = f/(«(0))a/(0) = f'(po)a’(0). Similarly,

0)
(f28)'(0) = f'(po)B'(0). But £ (’(0),5(0)) = £ ('(po)a’(0 ),f'(po)ﬁ/(o)é
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11.4. Cauchy-Rieman equation.

Let O be an open subset of R?, and k(x,y) = (u(x,y),v(z,y)) a smooth
map from O to R?. The degree 1 Taylor expansion of k at (xg, %) is
k(zo,y0) + kz (20, yo)x + ky(20, Yo)-
The map dky, ) : R? — R? defined by (x,%) — kz(x0,y0)r + ky(zo,y0)y is
linear, and is called the differential of k at (xo,yo)-
We want to write down the matrix for the differential dk(,, ). Note that
dk(a}o,yo)(xa y) = kw (.CL'(), yO)x + ky($07 y(])y
= (uz(x0,%0), vz (w0, Y0))z + (uy(Z0, Yo), vy(x0, %0))y
= (uz (0, Yo)x + uy(20, ¥0)Y, v2(20, Yo) + vy (o, Yo)y)-

Write R? as the space of coloumn vectors. Then dk(2,y0) 18

dk ) _ (uz(wo,y0) uy(zo,y0)\ (=
(@o.w0) | ve(70,90)  vy(z0,%0)) \¥/°
In other words, the matrix of the linear map dk(y,,,) with respect to the
standard basis is the Jacobi matrix

(ux(xo,yo) uy(x07y0>> _

vz (20, 90)  vy(Z0, o)
It is known from calculus that
||k(z + 20,y + yo) — k(z0,Y0) — Ak 40) (T, Y)]
(z,y)l
Theorem 11.4.1. Let k(z,y) = <u(m,y)> be a smooth map, and f(z) =

v(z,y)
u(z,y) +iv(x,y). Then the following conditions are equivalent:

(i) dk(a:o,yo)
(i uz (70, Yo) = vy(T0,Y0)

— 0. (11.4.1)

is linear conformal,

Uy(x(], yO) - —’l)z(.%'(), yO)v
(iii) f = w+ v is analytic at zo = xg + iyo, and f'(20) = uz(x0,y0) +
(%0, Yo)-
Proof. A linear map T <§> = Z 2) (5) is linear conformal if d = a and

c = —b. So (i) and (ii) are equivalent. If dk,, ,) is linear conformal, then
when we identify R? as C, the linear operator Ak (z,40) O R? becomes M,
where o = u, (20, yo) + v (0, y0). So (11.4.1) becomes
f(z0+2) = f(20) — az
z
as z — 0, i.e., f is analytic at zg and f'(z0) = uz (20, y0) + ivz(z0,30). O

— 0

As a consequence, we get



31

Theorem 11.4.2. Suppose u,v : O — R are smooth. Then f(z) = u(z,y)+
iv(x,y) is analytic if and only if u,v satisfies the Cauchy-Rieman equation:

Up = Vy, Uy = —Vy. (11.4.2)

Theorem 11.4.3. Suppose f : O — C is analytic, and f(z) = u(z,y) +
iv(x,y), where u,v are real valued functions. Then

(a) f'(2) = fo = —ify,
(b) u,v satisfy the Cauchy-Rieman equation (11.4.2),

(c) 5 s
. . 1 :
I'(2) = ug + vy = uy — iuy = 5 (8:1: - zay) 1,
(d) w and v are harmonic functions, i.e.,
Ugpy + Uyy = 0, Vzp +vyy = 0.
Proof. We will give another proof of (b). The function f is analytic means
e feth) = £(2)
z+h)—f(z
li = f'(2).
Jim 3 f(2)
Here h = r+is is a complex number and the limit is equal to f/(z) whenever
h — 0. If we choose h = r — 0, then the limit is f, = u; + iv,. If we choose
h =1is — 0, then
flx +iy+is) — f(x +iy)  u(z,y+s)+iv(x,y+s) —u(r,y) —iv(zr,y)
5] 8
_ 1 <U($,y + 8) — ’U,(.T},y) +i 'U([E,y—i- 3) — U(J;:y))

1 S S
so as s — 0, the limit is
E(Uy + 1vy) = vy — TUy.
But the assumption is that no matter how the complex number h — 0, the
limit is always the same, and is equal to f/(z). This shows that
I'(2) = ug + ivy = vy — iuy,.

In other words, f'(z) = fz = —ify, which proves (a). This also shows that

Uz = vy and u, = —v,, which is (b).
Since . 5 5 .

it is equal to f’(z), which gives the last part of (c).
For (d), we use (b) to compute uyy + Uyy = Upe — (Vz)y = Uga — (Vy)z =
Uze — (Uuz)e = 0. Similarly, vy, + vyy = 0. O

Part (c) of the above theorem explains the notation in complex variable:

o _1(0 .0
0z 2 \oz oy )
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Corollary 11.4.4. If f : O — C is analytic, then f’ is also analytic.

Proof. Suppose f = u + iv. Then u, = vy and u, = —v,. We know that
f' = ug+iv,. We claim that U = u, and V = v, satisfy the Cauchy-Rieman
euqation. To see this, we compute Uy = Uzy, Vi = gy = (Vy)2 = (Ug)z =

Ugg, 50 Uy = Vi Also Uy = uyy and Vy = vy = (—uy)y = —Ugy, thus
U, = —V,. Hence U,V satisfy the Cauchy-Rieman equation. By Theorem
11.4.2, f’ is analytic. O

11.5. Harmonic conjugate of a harmonic function.

Given a harmonic function u : @ — R, is there a harmonic function
v: O — R such that f(z) = u(x,y) + iv(z,y) is an analytic function? We
know that such v must satisfy the Cauchy-Rieman equation

{% - (11.5.1)

Since u is given, the right hand sides are given functions. By Frobenius
Theorem, the compatibility condition that the above system is solvable is
that (—uy)y = (Uz)a, i.€., Ugz + uyy = 0. Since u is harmonic, the compat-
ibility condition is satisfied, so we can solve v. In fact, such v are uniquely
determined up to a constant. Now let f(z) = u(z,y) + iv(x,y). Because
u, v satisfy the Cauchy-Rieman equation, f is analytic. We call such v a
harmonic conjugate of wu.

Next we give more detail of construction of solution v of (11.5.1). Given
P(z,y) and Q(z,y), the following initial value problem has a unique v(z,y),

vy = P
vy = Q, (11.5.2)
v(0,0) = ¢

it P, = @;. The solution v can be constructed using integration. Fix y, the
first equation implies that v(z,y) = co + [ P(s,y) ds + g(y) for some g.
But

o o [7OF /
vy—ay/o P(s,y) ds+g(y)—/0 8y(s,y) dy +g'(y)

- /Ox Qx(s,y) dz +¢'(y) = Q(z,y) — Q(0,y) + ¢'(y),

which is equal to @ if —Q(0,y) + ¢'(y) = 0. So ¢'(y) = Q(0,y), hence
9(y) = [J Q(0,¢) dt. In other words, we have proved:

Theorem 11.5.1. The solution for (11.5.2) is

v(z,y) =co + /Oy P(s,y) ds + /OyQ(O,t) dt.

Theorem 11.5.2. If u is harmonic, then
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v(z,y) = c—/uy(az,y) da:+/ux(0,y) dy

s a harmonic conjugate of u,
(ii) f =wu+iv is an analytic function.

Proof. A harmonic conjugate of u must satisfy the Cauchy-Rieman equation

Vg = —Uy,
Vy = Uy.
Part (i) follows from Theorem 11.5.1, and (ii) follows from Theorem 11.4.2.

O

Example 11.5.3.
Let u(z,y) = coshycosxz. It is easy to check that w is harmonic. The
harmonic conjugates of u is obtained by solving

Vg = —Uy = —sinhycosz = P,
vy = u, = —coshysinz = Q.

So Q(0,y) = 0. By Theorem 11.5.2,

v(z,y) = /—sinhycosa; dr + /Ody = ¢ —sinhysinx
is a harmonic conjugate of u. Note that
u + v = coshycosx — isinh ysinx + ¢,
which is equal to cosh(—iz) + ic because

eyfi:p + ef(yfi:v)

cosh(—iz) = cosh(—i(x + iy)) = cosh(y — ix) =

2
eY(cosx —isinx) + e Y(cosx + isinw)
2
eV +eY eV —e Y . .
=y 08T —i———— sinz = coshy cos x — isinh y sin z.

Hence cosh y cos z is the real part of the analytic function cosh(—iz).

Exercise 11.5.1.

(1) Prove that u(z,y) = 1In(2? + y?) is harmonic for z > 0, and find a
harmonic conjugate for u. (The analytic function obtained this way
is In(z)).

(2) Prove that u(x,y) = z—
conjugate v for u with v(

8
w

+2y? is harmonic, and find the harmonic
,0) =0.

oOw
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11.6. Weierstrass representations of minimal surfaces.

Proposition 11.6.1. Let f = (f1, f2,f3) : O — R? be a parametrized
surface. Set

05 = (f1)e —i(fj)y, 1<j <3
Then f is isothermal paramtrization if and only if ¢ + ¢3 + ¢3 = 0.
Proof. Note that
3

&1+ 5+ 65 = > _((f)a —i(fi)y)?

j=1
3
= ()3 = ()3 = 2i(£)e(f)y
j=1
= [1£all? = [1fl* = 2ifz - fy,

which is zero if and only if both the real part and imaginary part are zero,
i.e.,

fo”2_||fy”2:07 fx‘fy:O,
which is equivalent to f(z,y) is isothermal parametrization. O
Proposition 11.6.2. Let f = (f1, fo, f3) : O — R3 be a surface parametrized
by isothermal parametrization, and ¢; = (fj)e — i(fj)y. Then f is minimal
if and only if ¢; is an analytic function for j =1,2,3.
Proof. Since the parametrization is isothermal, by Corollary 11.1.4 f is min-
imal if and only if each f; is harmonic for 1 < j < 3. Let g; be a harmonic
conjugate of f;. Then I} = f; + ig; is an analytic function for 1 < j < 3.
By Theorem 11.4.3 (c), F}(2) = (fj)z —i(f;)y = ¢;. By Corollary 11.4.4, ¢;
is analytic. ]

Given an analytic function g, let [ g dz denote an anti-derivative of g,
e, ([gdz) =g
Example 11.6.3.
(1) fzdz:§+c,
(2) [2"dz= i:ll +ec,
(3) [e* dz=¢€*+c¢,
(4) [sinz dz = —cosz+c.

Given a complex value function f = u+iv, we use the notation u = Re(f)
and v = Im(f).

Corollary 11.6.4. Suppose ¢j : O — C are analytic such that qb%—i—gbg—}—gbg =
0 and |p1|* + |p2|? + |p3|* never vanishes on O. Set

F@ = [0 ds = Re(F))
Then f = Re(f1, f2, f3) is a minimal surface.
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Therefore given any two analytic functions ¢1, ¢ from O to C, we may

choose ¢3 = /1 — qﬁ% — ¢% and let

P ([ [ o [osrts) . f=Retr)

If ||¢(2)]] is not zero for all z € O, then f := Re(F) : O — R3 is a minimal
surface.

Example 11.6.5. Let
¢1(2) =sinhz, ¢9(2) = —icoshz, ¢3(z)=1.
Then ¢? + ¢ + ¢p2 = sinh® z — cosh? z + 1 = 0, and

F(z) = </ sinh z dz,/—icoshz dz,/l dz> = (cosh z, —isinh z, 2).

But
e“+e”? . .
cosh z = —g = cosh x cosy + ¢ sinh x sin y,
e — e~ %
sinh z = —y = sinh z cosy + ¢ cosh x sin y.

So the real part f(z) of F(z) is
f(z) = f(x,y) = (coshx cosy, cosh x siny, x),

which is a Catenoid. Note that || Z?:l ¢;(2)|[?|| is always positive. So f is
an immersion for (x,y) € R2.

Exercise 11.6.1. Given ¢ = (¢1, ¢2, ¢3) with ¢; analytic for j = 1,2, 3:
(a) ¢(z) = (isinh z, cosh z, 7),

(b) ¢(2) = (1 —22,i(1 + 2%), 22),

(©) 6() = (1 12 7251

(d) ¢(z) = (1 — cosh(—iz),isinh(—iz), 2sinh(—iz/2)).
Then

Prove that 2:33':1 (Z)? =0,

Compute F(z) = [ ¢(z) dz = ([ ¢1(2) dz, [ ¢2(z) dz, [ ¢3(2) dz).
Find the region of (z,y) such that ||¢(2)|| > 0, where z = = + iy.
Compute the real part of F'(z) to get a minimal surface. (For (a)-
(d) the minimal surfaces are helicoid, Ennper, Scherk, and Catalan
surfaces respectively.

~— — —

2
3
4

o~~~

Theorem 11.6.6. Suppose ¢1(z), p2(2), ¢3(2) are analytic functions and
d1(2)? + ¢2(2)” + ¢3(2)* = 0.
Let ¢(z) = (¢1(2), $2(2), 63(2)), and F(z) = [ ¢(2) dz = f(z) +ig(z). Let

0 <0 <27 be a constant, and set

Yi(2) = €i(2),  P(2) = (Y1(2),92(2), ¥3(2)) = e”6(2)
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Then

(2) 51 95(2)° =0,
(b) [¥(z) dz =e?F(2) = (fcos — gsinf) +i(fsind + gcosh),
(¢) folz,y) = f(z,y)cosb — g(x,y)sinb is a minimal surface.

Proof. (a) Since ¢; = e?¢;,

3 3
Z wj(z)Q = %0 Z qﬁ? =0.
j=1 j=1

(b) Note [1(2) dz = [€¥¢(z) dz =€ [ ¢(2) dz = e F(2).

(c) is a consequence of Corollary 11.6.4. O

The above Theorem can be used as follows: Given a minimal surface
f = (fi, f2, f3) in isothermal parametrization, let ¢ = f, —if,, and F' =
J ¢(2) dz. Then the real part of F' is f. Let g denote the imaginary part of
F. Theorem 11.6.6 says that fcosf — gsinf is also a minimal surface for
each constant 0 < 6§ < 27. So each minimal surface comes in a family, which
is called the associated family of f.

Exercise 11.6.2.

(1) Find the associated families of the minimal surfaces given in Example
11.6.5 and Exercise 11.6.1.

(2) Use MathLab to plot these minimal surfaces (for each family, plot
the surface fp with § = 0,7/6,7/4,7/3,7/2).

12. DIFFERENTIAL FORMS

Let f: O — R? be a parametrized surface in R?. Given py € O, (dz1)p,
and (dxz)p, are linear functionals on the tangent plane T'f,, defined by

(di)po (fo;(P0)) = 0ij.
A smooth 1-form on the surface f is
0= a1($1,1132) daﬁ1 + az(fL’l, :IZQ) d:L'Q,

where ay,a2 : O — R are smooth functions. In particular, 6(f;,) = a; for
i=1,2.

Wedge product
Let 61,602 be 1-forms. The wedge product 81 A 0 is defined as follows:

(01 A 62)(v1,v2) = %(91(01)92(02) — 01(v2)02(v1)).

Exercise 12.0.3. Suppose 01,05 are 1-forms. Prove that
(1) 01 N 09 is skew-symmetric, i.e., (91 AN 02)(1)2,1}1) = *(91 VAN 92)(’01,’[}2).
(2) 01 ANBL =0,
(3) Oa NGy = —02 N Oy,
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(4) if 6; = a;dxy + bidxs for i = 1,2, then
01 N\ Oy = (a1by — agby) dxy A dxo.
A smooth 2-form is
T = h(z1,z2)dxy A dxo
for some smooth function A : O — R.

Exterior differentiation
If  : O — R is a smooth function, then the exterior differentiation of ¢
is the 1-form defined by

dop = ¢g, dxy + ¢gy dzo.
The exterior differentiation of a smooth 1-form 6 = a dz1 + b dxo is defined
by

df = da N dx1 + db A dxs.

Exercise 12.0.4. Prove that if § = a dx1 + b dxs, then
df = (—ag, + by, )dx1 A dxs.

Proposition 12.0.7. If ¢ : O — R is a smooth function, then the exterior
differentiation of the 1-form d¢ is zero, i.e., d(d¢) = 0.

Proof. Since the (¢z,)zy = (Pzy)a,

d(d¢) = d(‘bmdwl + ¢$2dx2) = (_((bm)m + (¢w1)$2) dxy Ndzo = 0.
|

Exercise 12.0.5. Suppose h, k : O — R are smooth functions. Prove that
d(hk) = (dh)k + h dk.

Exercise 12.0.6. Let h : O — R be a smooth function, and 6 a smooth
1-form. Prove that

(1) d(h) =dh N6+ h db,

(2) d(h8) = d(0h) = (d9)h — 0 A dh.

Suppose € is a domain in R? with piecewise smooth boundary 9. The
2-form dzx; A dzg can be viewed as the counterclockwise orientation of Q (so
dxa Adx; is the clockwise orientation of €2). Suppose we choose the counter-
clockwise orientation for €2, then this induces an orientation on the boundary
by requiring that from the outward normal of € to the orientation of the
boundary is counter-clockwise. We call such orientation on the boundary
0f) the induced orientation.

We recall the Green’s formula:

Green’s formula
If P,Q : Q — R are smooth functions, then

/ P(.Tl,.l‘g) dry1 + Q($1,$2) dro = //(—F)gc2 + Qll) dx1 N dxo,
15)9) Q
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where 02 has the induced orientation.
Note that
d(P dzx1 +Q dxg) = (—]Dx2 + Qa;l) dx1 N dxog,

so the Green’s formula can be rewritten as

/899://Qd9’ (12.0.1)

where 6 is the 1-form 0 = P dz1 4+ @ dzo. Here the line integral f{m P dz +
@ dxy can be computed by choosing a parametrization t € [0, ¢] — (z1(t), z2(t))
that parametrized the boundary curve 02 with the induced orientation.
Then

/ P dzry + Q dxy = /C P(x1(t), m2(t))2 (t) + Q21 (1), m2(t)) 25 (¢)dt.
o0N 0

Formula (12.0.1) holds for a domain in R™ if we replace the 1-form by an
n — 1 form, and is called the Stoke’s formula. We explain the 3-dimensional
case: Let D be a domain in R3. A smooth 1-form on D is

0 = a1 dx1 + ag dxo + a3 dxs

for some smooth functions ai,as, ag on D. Let 01,605,035 be 1-forms on
D. The wedge product 61 A 03 is defined as above, and the wedge product
01 N 05 A 03 is the 3-form defined by

1
0L N0 N3 = o D sgn(s)01 (vs(1))02(vs(2))03(vs(3))-
SES3

Here S3 denote the set of all permutations of {1,2,3}, i.e., the set of all
bijective maps from {1, 2,3} to itself, and sgn(s) = (—1)™ if s can be written
as product of m permutations of two letters. It follows from the definition
that (61 A 62 A 03), is an alternating multi-linear functional on R3 for each
p € D. A smooth 2-form can be written uniquely as

bidxo A dxs + badxs A dxy + bsdxy A dxa,
and a smooth 3-form on D is
h(.ﬁL‘l, X9, $3) dx1 A dxo A dxs,

where h : D — R is some smooth function. The exterior differentiation is
defined similarly:

(1) For h: D — R,
dh = hy,dx1 + hg,dxs + hyodxs.
(2) For a 1-form 6 = aydzy + asdzs + agdxs, df is the 2-form defined by
df = da1 N\ dzxq + das A dzo + dag A dzs.

(3) For a 2-form 7 = bydzg A dzg + bedxs A dzy + bsdzy A dzo, dT is the
3-form defined by

dr = dby A dxo A dxs + dbs A dxs A drq + dbg A dxq A dxs.
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Exercise 12.0.7. Let D be an open subset of R3.
(1) Suppose 0 = ajdz + asdrs + asdxs. Prove that

df = ((a2)z, — (a1)z,) dxy Adza + ((a3)z, — (a2)as) dra A dxs
=+ ((al)zg - (a3)z1)d$3 VAN dl‘l.
(2) Prove that if h: D — R is smooth then d(dh) = 0.

Exercise 12.0.8. Prove that

(1) dxo Ndxg AN dxy = dxs Ndxy N\ dry = dxy Adxo Adxs,
(2) if 7 = bidxo A dxg + badxrg A dxy + b3dxy N dxo, then

dr = ((b1)z, + (b2)zy + (bg)xg) dxr1 N\ dxo A dxs.

The divergence formula is

/ / /D ((b1)zy 4 (b2)ey + (b3)ay) dazy A dao A das

:// b1 dxo N dxs + by dxs N\ dxy + bg dxy A dxs,
oD

which can be written as the Stoke’s Theorem:

)01 ]

where 7 = by dxo A dxs + by drs A dx1 + bg dxq A dxs.

R"-valued form 1-form
Let h = (hy, ha, h3) : O — R3 be a smooth map. We define

dh := (dhy,dhg, dhs).
Then dh is a R3-valued 1-form. In fact,
dh = hy,dxy + hy,dxs.

Note that here hy,, hy, are R3-valued maps.

13. CARTAN’S METHOD OF MOVING FRAME

Let f : O — R3 be a parametrized surface, and eq, es, e3 a smooth or-
thonormal frame on the surface such that es = IV is the unit normal vector
field of the surface. We can write (e;), and (e;)g, as linear combinations of
€1, €2, €3:

(€i)z, = e1p1i + e2p2i + e3ps;,
(€i)z, = €1q1i + €2q2i + €3q3;,

where

Pji = (ei)xl “€5, Q5 = (ei)xz SR
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If we use the differential form notation, then the above equation becomes

3 3
de; = ijiej dri + Z qjiejdxg
Jj=1 J=1

3

3 3
= ijidxlej + Z q]'id:L’gej = Z(pjidwl + qjidxg)ej.

Set
wj; = pjidr1 + gjides,

then we can rewrite de; as
3
de; = wjej,  1<i<3. (13.0.2)
j=1

Recall that the Gauss-Codazi equation for surface f is given by the con-
dition that (€;)z,2, = (€i)zyay, Which is also the condition that d(de;) = 0.
But

3 3
0= d(dez) =d Z wje; | = Z dwjiej — wj; N dej
p =1

3 3 3
= Z dwjiej — Z wi; N\ Z Wi j€k
j=1 j=1 k=1
3 3 3
= Z dwyier, — Z Z wj; N\ Wj ek
k=1

k=1 j=1
3 3 3
= Z dwi;er + Z Z Wi N\ Wjie
k=1 k=1 j=1
3 3
= Z dwy; + Z Wgj N Wj; | ek,
-1 j=1

so each coefficient of e, must be zero, i.e.,
dwy; + Z wi; N wj; = 0. (13.0.3)
J

This is the condition that d(de;) = 0, which is the same as (€;)z,2, = (€i)zoz1 5
so the above equation is the Gauss-Codazzi equation. Take the dot product
of (13.0.2) with e; to get

Wy = dei c€j.
But e; - e; = 6;; implies that de; - e; + ¢; - dej = 0, so

Wij + Wi = 0, wy=0.
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Thus
3

Zwm/\wm = w11 A wiz +wiz Awa +wizg Awsg =0+ 0+ wig A wsa.
k=1

Similarly, we get Zi:l wor A Wiz = wo A wiys, and 22:1 Wig N\ Wiz =
w1z A weg. So the Gauss-Codazzi equation (13.0.3) becomes

dwiz = —w13 A w3z,
dwez = —wo1 A w13, (1304)
dwiz = —wi2 A wag.

The first equation is the Gauss equation and the second and third are the
Codazzi equations.
Set

wy =df -e;, wo=df -es.
Then we have
df = wye; + waes.
We claim that
I= w% + w%,
IT = — (w1 ® wiz + we @ wa3).

To see this, we assume the surface f is parametrized by orthogonal coordi-
nates, and

A% = fa1 * fars A% = foy * fuo, lij = frix]’ " €3.

So

I = A¥da? + A3da3,

II = gndl‘% + 2019dx1dzo + eggd.@%.
We choose

_ f961 _ fr2 —
el—Al, 62—A2, ez = €1 X €.
Then
f:m fm : f;tldl'l A%dxl
wy =df - e1 = (fr,dz1 + fr,dx2) 4 A " 1dxy
Similarly,
wy = Agdxs,

SO

2 2
I:’U)l +'LU2.
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Write

2
w1z = hiiwy + horwa = h11Ardzy + hoyAsday = Z hj1Ajdx;,
=1

2
wag = higwy + hogwy = ho1Ardxy + hogAsdxy = Z hjoAjdz;.
=1

Since w;3 = deg - ¢;,
(€3)z; - €1 = wiz(fz;) = har A,
Similar computation implies that
(€3)z; - €2 = hi2A;.
But
(€3)z, - €j = Ny, - fo; = —iﬁ
So h;jA; = —%, which implies that
li; = —hij AjA;.
Since £15 = lo1, h1a = ho1. Next we compute
w1 @ w3 + wa ® waz = wy ® (h11wy + horwa) + wa ® (higwy + hoows)
= h11w? + 2hypwiws + hoows = hy1 A3dx? + 2hy9 Ay Asdaydas + hoy A3da
= —(Eudx% + 2019dx1dxy + Eggdm%) = —II.
This proves the claim. Recall that
l11l9n — 03, — 922011 — 2912412 + g11422
911922 — 91y 911922 — 91 '
Since {;; = h;; A;Aj, we have

K = det(hi]’), H = h1y + hao.

K =

The geometric meaning of the 2-form w3 A wag
We compute
w1z A wag = (hiywr + higwa) A (h1gwy + hagws) = (h11haz — hig)wi A wa.

But the Gaussian curvature is K = hy1hog — h%Q, so the first equation of
(13.0.4) (the Gauss-equation) gives

dwia = —wi13 A w3z = wiz A waz = Kwy A wa,

ie.,

dwis = Kwy A ws. (13.0.5)
Note that K is a function on the surface and wy A wo = A1As dxy A dxg =
det(gi;j) dxi A dxo is the area element of the surface.



43

Structure equations

We will show that wis can be computed in terms of the first fundamental
form. Since

df = wier + waes,
0= d(df) = d(W1€1 + ’LUQ@Q) = dwieqp — wy A dej + dwseg — wo A deg
= dwie; —wi A (w21€2 + ’w31€3) + dwoes — wo A (’LU12€1 + 'LU3263)
= (dw1 — w2 N\ ’LU12)€1 + (d'LUQ — w1 A w21)€2 — (w1 A wsy + w2 A w32)63
= (dwy + w12 A wz)er + (dwz + war A wi)ea + (w1 A wiz + wa A waz)es.

Since eq, e9, e3 form a basis, the coefficients of e; in the above formula must
be zero. Use w; A w; = 0, wy A we = —wy A wy to compute the coefficient of
e3 to get

w1 Awiz + wa Awag = wi A (hpiwy + harwa) + wa A (hipwy + hogwo)
= horwi A wa + hipwa A wy = (ha1 — hi2)w A wa,
which is zero, so we obtain his = hg;. This gives another proof that the

shape operator is self-adjoint. The coefficients of e, es are zero give the so
called structure equation of the surface:

w91 = —WwW12. (13.0.6)

dwy + w2 A wy = 0,
dwg + wo1 Awq =0,

Exercise 13.0.9. Suppose wy = Aijdz1, wy = Asdrsy, and wie = u dri +
v dxe. Use the structure equations (13.0.6) to prove that

(A1), _ (A2)a,

A, T T4,

In other words, wy2 can be solved from I.

We summarize the moving frame method: Let f : O — R? be a parametrized
surface. We

(i) choose an orthonormal tangent moving frame ej, e on the surface,
(ii) set e3 = e X ea, w; = df - e; for i = 1,2, and w;; = de; - e; for
1<4,7<3.
Then w;; satisfy the Gauss-Codazzi equation (13.0.4), and w1, wa, w12 satisfy
the structure equation (13.0.6).
Conversely, given 1 = E da? + 2F dzidzs + G dx3 and 11 = L dz} +
2M dxyidxe + N d$% such that £ > 0, EG — F2 >0

(1) write I as w? +w3 by the method of completing squares to get w1, wy,

(2) construct wia by solving the structure equation (13.0.6),

(3) w13, w23 can be obtained by writing II as —(wjwi3 + wowss), (this
can be done by writing —II as hnw% + 2h1pwiwe + hggw%, then
w1z = hijwi + hipws and wag = hipwy + hoyws),

(4) set wy; = 0 for 1 < 7 < 3 and Wi = —Wij.
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The Fundamental Theorem of surfaces in R3 can be stated as follows: If W
satisfies (13.0.3) (or equivalently (13.0.4)), then there exists a surface in R3
unique up to rigid motion with I, I as the fundamental forms.

Exercise 13.0.10. (1) Let I = Z?,j:l gijdridz; be the first fundamen-
tal form of some surface. Prove that

gr1dx? + 2g12dxidey + goodas
2

2 )
= <\/9T <dl‘1 + 92 dwz)) + 14/ 192 7912 gy, |
gi11 gi1

— 3
(2) let w1 = \/g11(dx1 + % dzs) and wg = 4/ gng;%“ dxs, prove that

wy Awy = \/g11922 — g1y dxy A dxy,

which is the surface area element.

Exercise 13.0.11. Suppose

€2
_ 2x2 2 2 _ X2 2 2 67 )
I=e"2da]+dx;, II=—e"2v1—e?*2 da]+ N dzs.

Find wy, w2, w;; and prove that w;; satisfy the Gauss-Codazzi equation
(13.0.4).

14. GEODESIC CURVATURE

Let a(s) = f(x1(s),x2(s)) be a smooth curve on the parametrized surface
f: O — R3 and s the arc length parameter of «, i.e., |[o/(s)]| = 1. Let
vi(s) = d/(s), vs(s) = N(a(s)), the unit normal of the surface at «(s),
and va(s) = v3(s) X v1(s). Note that va(s) is perpendicular to o/(s) and is
tangent to the surface at a(s). Since (v1,va,v3) is orthonormal,

0 —ky, —kn
(vivé, Ué) = (Ula V2, U3) kg 0 Tn
kn -1, O

for some smooth function kg, k, and 7,. In fact,
/ / /
kg =v]-va, ky,=wy-v3, T,=13" 02,

which are called the geodesic curvature, normal curvature, and normal tor-
sion respectively. Note that (v1,ve,vs) is not the Frenet frame of a.
Proposition 14.0.8. Suppose ey, es is an orthonormal tangent frame for
the surface f : O — R3, e3 = e X ea, and wi; = dej-e; for1 <i,j < 3. Let
a(s) = f(z1(s),x2(s)) be a smooth curve on the surface parametrized by the
arc-length, and ¢(s) the angle from e1(x1(s),x2(s)) to &'(s). Then

ky = —wia(a/(s)) + ¢'(s). (14.0.7)
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Proof. Since the angle from eq(s) to o/(s) is ¢(s),
v1(5) = cos d(s)ex(s)+5i (s)ea(s),  va(s) = — sin d(s)e (5)+c0s 4(5)ea(s).
But
kg =v] vy = (cos¢ e1 +sing )’ - (—sing e1 + cos ¢ e)
= (—¢'sing ey + ¢ cos g ea +cosp €| +sine e)) - (—sing ey + cos ¢ e3)
= ¢ +cos’ ¢ e'l-eg—sin2<;5 e eq
= ¢/ —wia(a(s)).
In the above computation we use the fact that €] -e; = 0 and €} - ¢; =

.. /‘
e - €. O

Proposition 14.0.9. Suppose a(s) = f(z1(s),x2(s)) is a smooth curve on
the parametrized surface f : O — R3, and o is parametrized by arc-length.
Then o is a geodesic if and only if kg = 0.

Proof. We had a result that if « is parametrized by arc-length, then « is a
geodesic if and only if o//(s) is parallel to the normal vector of the surface
at a(s) (i.e., e3(z1(s),x2(s))). But vy = o/, v3 = e3, vo = v3 X vy,

fui =d = kgvo + kyv3,
So o is parallel to es if and only if ky = 0. O

Corollary 14.0.10. Suppose a(s) = f(x1(s),x2(s)) is a geodesic for f, and
« is parametrized by arc-length, e1, ea is an orthonormal tangent frame, and
@(s) is the angle from e1(s) to &'(s). Then ¢'(s) = wia(d/(s)).

15. THEOREM OF TURNING TANGENTS

A smooth curve « : [a,b] — R3? is a closed curve if a(a) = a(b) and
o (a) = a9 (b) for all j > 0, where ) = 657?‘. A smooth closed curve «

is simple if « is one to one.

Suppose the image of a simple closed curve « : [a,b] — R3 lies in an
open ball B in R?, and e; : B — R? is a smooth unit vector field. Given
v1,v9 € R3 let £ (v1,v2) denote the angle from vy to vy. Let

¢(s) = £ (ex(a(s)), o/ (s)).
Intuitively, we see that
¢(b) — ¢(a) = 2m,
which is the total turning of the tangents.
A continuous curve « : [0,c] — R3 is called a piecewise smooth k-gon if
there exists 0 =t < t; < --- <141 = c such that
(1) the restriction of « to [t;, t;+1] is smooth, and let a; = a | [t;, ti41]
denote the restriction of « to the interval [¢;, ¢;41] for 1 <i < k.

(2) ale) = a(0),
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(3) £ (a(tiy1),ajyq(tiy1)) #0or 7w for all 1 <i <k (here agqq = a1).
We call a(t;) a vertex of the piecewise smooth k-gon, «; | [ti,ti+1] an edge
of the k-gon. A piecewise smooth k-gon is a geodesic k-gon if each smooth
edge «; is a geodesic. The angle

Oir1 = £ (@(ti+1), iy (i)
is the exterior angle at the vertex a(t;), and

Bi =m—0;

is the interior angle at a(t;). Set

¢i(t) = £ (er(a(t)), aj(t)).
Then the total turning of the tangents along o is ¢;(t;i+1) — ¢i(t;). The
total turning of the tangents for the piecewise smooth k-gon is the sum of
the turning on every edge plus the jump at the vertex «(t;), so the total
turning of tangents is

k

D (@iltinn) — i(ti) + b;.

i=1
The following is a theorem in topology:

Theorem 15.0.11. (Theorem of turning tangents)
k

S (@itir) — ¢ilts)) + 0; = 2.

=1

16. LocAL GAUSS-BONNET FORMULA

Let do denote the area element of the surface f: O — R3, i.e.,

do = 1\/g11922 — 9%2 dzi N\ dxo = w1 A wa.

The Gauss equation (13.0.5), dwia = Kw; A wa, implies that

[ =] o=

By the Green’s formula (or the Stoke’s formula), we have

//dwm—/ w1z,
//le/\wgz/ w12
Q oN

Suppose A is a geodesic triangle, i.e., A can be parametrized by a piecewise
smooth a : [0,c] — R? with 0 = t; < t3 < t3 < t4 = c such that o; =
a | [ti,ti+1] is a smooth geodesic for 1 < i < 3 and «(0) = a(c). Let

SO
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0; = £ (c(ti+1), @i(ti+1)) denote the exterior anlge at the vertex a(t;), and
B; = m — 6; the interior angle at a(¢;).
Theorem 16.0.12.

(1) ffAK do = 27 — (91+92+93),

(2) i+ B+ Bs=m+ [ [, K do.

Proof. We have shown that [ [\ K do = [, , wi2. But

c 3 tit1
/ wig = / wip(d/ (1)) dt =) / wia(di(t) dt.
N 0 oy Jti

Since «; is a geodesic, by Corollary 14.0.10,
wiz(a’) = ¢,
where ¢;(t) = £ (aj(ti), ;(tit1)). So

)

//A K do = izg;/:ﬂ Oi(t) dt = ii;qsi(tm) — éilt).

The Theorem of turning tangents implies that the above term is equal to
21 — (01 + 02 + 03), which proves the first formula. Since 5; = 7 — 0;, the
second formula follows. O

Corollary 16.0.13. The sum of interior angles of a geodesic triangle
(1) in the plane is 2,
(2) in the unit sphere is 2w plus the area of the triangle,
(3) in a surface with K = —1 1is 2w minus the area of the triangle.

17. CLOSED SURFACE IN R3

Given a smooth function u : O — R, the graph of u over the zy-, yz-,
and zz- plane are {(z,y,u(z,y) | (z,y) € O}, {(u(y, 2),v,2) | (y,2) € O},
and {(z,u(z, 2),2) | (x,2) € O} respectively.

A subset M of R3 is called an embedded surface if given any point p € M
there exist an open subset I/ of R3 containing p, an open subset O of R?,
and a smooth function u : O — R such that & N M is the graph of u over
xy-plane, yz-plane, or xz-plane.

An emebedded surface M is closed if M is bounded.

Example 17.0.14. The unit sphere S? is an embedded surface. For given
p = (p1,p2,p3) € S?, we have p? + p3 + p3 = 1, so not all py, pa p3 are zero.
If p; <0, then U = {(x,9,2) | x <0, and U N S? is the graph of

w:{(z,y) | 22 +y* <1} - R, defined by u(z,y) = —/1 — 22 — 2.

Given S C R?, a subset A of S is open in S if there exists an open subset
U of R3 such that A =SNU.



48

Example 17.0.15. Suppose f : O — R3 is a parametrized surface, f is 1—1,
and f(U)is openin f(O)if U is openin O. Then M = f(O) is an embedded
surface. For f is a parametrized surface, f;, X fz, # 0. Let f = (f1, f2, f3)-
fay X fz,(p0) # 0 implies that one of the following determinants at pg is not
Z€ro:

di = ‘(fl)l'l (f1>z2 do = ‘(f1>$1 (fl)m da = ‘(fZ)ifl (f2)$2
! (f2)11 (.]c2>3527 ? (f3)11 (f3)352’ ’ (f3)961 (f3)$2'

If d1(po) # 0, then by the Inverse Function Theorem the map

(£U1,J?2) = (y1,y2) = (f1(331,332),f2(1‘1,$2))

is a local diffeomorphism, i.e., locally there is an inverse (z1, z2) = g(y1,y2)-
Then (y1,y2, f3(9(y1,y2)) is the graph over yys-plane. Similar argument
shows that if da(pg) # 0, then near f(pp), f(O) is a graph over the y;ys3-
plane; if d3(po) # 0, then near f(pg), f(O) is a graph over ysys-plane.

Given a smooth function ¢ : R> — R and ¢ € R, the level set ¢~!(c) =
{p € R3 | ¢(p) = c}. The gradient of ¢ at p is

qu(p) = (¢I1 (p)a Py (p)v ¢13 (p))
We call ¢ € R a reqular value of ¢ if for all p € ¢~1(c), Vé(p) # 0.

Theorem 17.0.16. Suppose ¢ : R? — R is smooth, and c is a reqular value
of ¢. Then ¢~'(c) is an embedded surface.

Proof. Givenp € ¢~ !(c), since c is a regular value for ¢, (¢, (p), ¢z (P), Dus (D)) #
(0,0.0). So one of the component must be non-zero, say ¢,(p) # 0. Then
the Implicit Function Theorem says that near p, we can find a function u
such that ¢(z1, 22, u(x1,22)) = ¢, so near p, ¢~ *(c) is a graph. O

Exercise 17.0.12.

(1) Prove that {(z,y,2) | 22 + % — 22 = 1} is an embedded surface.
(2) Is {(z,y,2) | 2 + y? — 22 = 0} an embedded surface?

18. EULER CHARACTERISTIC

Let Ag denote the triangle in R? with vertices (0,0), (1,0), and (0,1). A
triangle on an embedded surface M is the image of a one to one continuous
map h : g — M. Note that we do not require the restriction of h to the
boundary to be piecewise smooth, and A is only assumed to be continuous.

A triangulation on an embedded surface M in R? is a collection of triangles
{A\; | i € I} satisfying the following conditions:

(1) Vierdi = M,
(2) A;N A is either an empty set, a vertex, or an edge,
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By the definition of surfaces, we see that there are exactly two triangles
contains each edge of the triangulation.

It is a theorem in topology that every embedded closed surface has a
triangulation. Given a triangulation D = {A; | i € I} on M, let

V' = the number of vertices in D,

FE = the number of edges in D,

F = the number of faces in D.
Another theorem in topology states that the number FF — E + V is inde-
pendent of triangulations (for a proof of this theorem see []). The FEuler
characteristic of M is

X(M)=F—E+V.

To give some reason to see whyX' (M) is independent of choices of trian-
gulations, let us start with a triangluation D of a surface M. Suppose s
is a common edge of triangles A1, Ag in D. We want to construct a new
triangluation on M that adds the mid point of s as a vertex. Then we must
joint the third vertices of A; and Aj to this mid point in order to make it
a triangulation, which will be denoted by D'. Let F(D), E(D), V(D) denote
the number of faces, edges, and vertices in D, and similar notations for D’.
Note that D’ has one more vertex, two more faces, and three move edges
than D, so

F(D') — E(D') + V(D') = F(D) — E(D) + V(D).

Let M; and My be two embedded surfaces in R3. A map ¢ : M; — My is
continuous if the preimage of an open subset in M5 is an open subset in Mj.
A continuous 1-1 and onto map v : My — My is called a homemorphism
if the inverse 1! is also continuous. Note that if D = {A; | i € I} is a
triangluation of M7 and v : M7 — M> is a homeomorphism, then

(D) ={y(Li) | i €1}

is a triangulation of Ms. Moreover, X (D) = X (¢¥(D)), hence X (M;) =
X (Ms). A property P of embedded surfaces is said to be invariant under
homeomorphism if M; has property P then so is ¢(M) for any homeomor-
phism . We call such property a topological invariant of surfaces. So the
Euler-characteristic is a topological invariant of surfaces.

Exercise 18.0.13. Let M be the unit sphere S2. We use three great circles
in the 2y-, yz-, and xz-plane to cut S? into 8 pieces. Each piece is a geodesic

triangle. It can be checked easily that these 8 triangles give a triangulation
for S2. Then F =8, E =12, and V = 6, so X(5?) = 2.

Exercise 18.0.14. Attaching a handle to a closed surface
Suppose D = {A; | i € I} is a triangulation on M. Choose any two
disjoint triangles A1, Ay in D. We attach a handle to M as follows:

(1) take out the interiors of Ay, Ay from M,
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(2) attach a triangular cylinder without base and the top to M \ {A; U
As} by gluing the boundary of the top of the cylinder to 9A; and
the boundary of the bottom of the cylinder to dAs.

To compute the Euler characteristic of 31, we choose the triangulation £ on
Y1 as follows:

(1) use the same triangulation on M,
(2) the cylinder part has three sides, each side is a rectangle, add one
diagonal to each rectangular side.

Then it is easy to see that
F&)=FD)-2+4+6, EE)=EMD)+6, V(&) =V(D).

So X(X1) = X(M) — 2. If M = S?, then the resulting surface ¥ is home-
morphic to a torus 72 and hence the Euler characteristic of a torus is 0. In
general, if we attach g handles to S?, then the resulting surface ¥, is a torus
with g holes and the above argument implies that

X(M,) =2-2g.

19. GAUSS-BONNET THEOREM

Theorem 19.0.17. (Gauss-Bonnet Theorem) If M is an embedded closed

surface in R3, then
// K do =2nX(M).
M

Proof. We may choose a triangulation of M such that each triangle A\; is a
geodesic triangle. Since M is bounded, the triangulation has only finitely
many triangles, say m triangles, A1, Ao, ..., Ap,. Let 6;(i) and 3;(4) be the
exterior angle and interior angle of A; at the j-th vertex. Then 0;(¢)+0;(i) =

7. Note . .
K do = // K do = / w1i2.

By Theorem 16.0.12, we have

/ wis = 27 — (01(3) + 02(3) + O5(0))
oON;

SO
m 3
// K do =2mm — ZZGJ(Z)
M i=1 j=1
But exterior angle is computed on each edge of the triangle, and each edge
is contained in exactly two triangle, so

m,3 m,3
Y b =2rE— Y B(i).

i=1,5=1 i=1,5=1
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In order to get the sum of all interior angles of all m triangles, we can add
the interior angles at each vertex, which is 27, hence

m,3
> B0 =2V,
i=1,j=1
We assume the triangulation has m triangles, so F' = m and [ [ y K dois
equal to 2nF — (2rE — 27V'), which is equal to 20X (M).

We call [ [ v K do the total curvature of M. It is clear that K depends
on the first fundamental form of M, so the total curvature is a geometric
invariant, but 27X (M) is a topological invariant. One consequence of the
above theorem is that the total curvature is a topological invariant. For
example, if M is a closed surface in R® with g holes, then [ [,, K do =
27(2 — 2g) = 4m(1 — g) regardless of how M is embedded in R3.

The Gauss Bonnet Theorem is often viewed as the beginning of global dif-
ferential geometry and topology, and also the first indication of the relation
between curvature and characteristic classes, which plays an very important
role in modern mathematics and mathematical physics.



