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1. Review

A parametrized surface is a smooth map f : O → R3 such that fx1(p), fx2(p)
are linearly independent for all p ∈ O, where O is an open subset of R3.
The tangent plane Tfp at f(p) is spanned by fx1(p) and fx2(p). The first
fundamental form is

I = g11dx
2
1 + 2g12dx1dx2 + g22dx

2
2,

where
gij = fxi · fxj ,

the dot product.
The map N : O → R3 defined by

N =
fx1 × fx2

||fx1 × fx2 ||
,

is smooth, has unit length, and is perpendicular to the tangent plane of f ,
and we call N the unit normal vector field of f . The shape operator Ap0 of
f at p0 ∈ O is the linear map from Tfp0 to Tfp0 defined by

Ap0(fxi(p0)) = −Nxi(p0), i = 1, 2.

So If v = afx1(p0) + bfx2(p0), then

Ap0(v1) = −aNx1(p0)− bNx2(p0).

We proved in 162A that

Proposition 1.0.1. The shape operator Ap0 : Tfp0 → Tfp0 is a self-adjoint
operator, i.e.,

Ap0(v1) · v2 = v1 ·Ap0(v2)

for all v1, v2 ∈ Tfp0.

The eigenvalues and unit eigenvectors of the shape operator are called the
principal curvatures and principal directions of the parametrized surface f .
We use k1, k2 to denote the principal curvature functions. The Gaussian
curvature and mean curvature are defined by

K = k1k2, H = k1 + k2.

A point f(p0) is umbilic if the principal curvatures k1(p0) = k2(p0), i.e.,
the shape operator Ap0 is equal to a scalar times the identity map of the
tangent plane Tfp0 .

1



2

The second fundamental form IIp is a symmetric bilinear form on Tfp
associated to the shape operator Ap, i.e.,

IIp(v1, v2) = Ap(v1) · v2

for v1, v2 ∈ Tfp. We denote II by

II = `11dx
2
1 + 2`12dx1dx2 + `22dx

2
2,

where
`ij = A(fxi) · fxj = −Nxi · fxj = N · fxixj .

This means that if vi = aifx1 + bifx2 for i = 1, 2, then

II(v1, v2) = `11a1a2 + `12(a1b2 + a2b1) + `22b1b2.

The Gaussian curvature and mean curvature written in terms of I, II are

K =
det(`ij)
det(gij)

,

H =
2∑

i,j=1

gij`ij =
1

det(gij)
(g22`11 − 2g12`12 + g11`22),

where (gij) = (gij)−1 = 1
det(gij)

(
g22 −g12

−g12 g11

)
.

A surface f : O → R3 is said to be parametrized by lines of curvature
coordinates if g12 = `12 = 0, in other words, fx1 , fx2 are perpendicular and
are eigenvectors of the shape operator. We know from 162A that

Theorem 1.0.2. If p0 is not an umbilic point of a surface f : O → R3, then
we can change coordinate locally so that the surface is parametrized by line
of curvature coordinates, i.e., there exists an open subset O0 of O containing
p0, an open subset O1 of R2, a diffeomorphism φ : O1 → O0 such that hx1,
hx2 are eigenvectors of the shape operator, where h = f ◦ φ.

Suppose f : O → R3 is parametrized by line of curvature coordinates. We
write g11 = A2

1, g22 = A2
2. Then we have

I = A2
1dx

2
1 +A2

2dx
2
2, II = `11dx

2
1 + `22dx

2
2.

The principal curvature k1, k2, Gaussian curvature K, and the mean curva-
ture H written in line of curvature coordinates are given as follows:

k1 =
`11

A2
1

, k2 =
`22

A2
2

,

K =
`11`22

A2
1A

2
2

= k1k2,

H =
`11

A2
1

+
`22

A2
2

= k1 + k2.
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We have proved that A1, A2, `11, `22 must satisfy the Gauss-Codazzi equa-
tions: 

(
(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

= − `11
A1

`22
A2
,

( `11A1
)x2 = (A1)x2

A2

`22
A2

( `22A2
)x1 = (A2)x1

A1

`11
A1
.

(1.0.1)

If we set

r1 =
`11

A1
, r2 =

`22

A2
,

then the Gauss-Codazzi equations (1.0.1) can be written as
(

(A1)x2
A2

)
x2

+
(

(A2)x1
A1

)
x1

= −r1r2,

(r1)x2 = (A1)x2
A2

r2,

(r2)x1 = (A2)x1
A1

r1.

(1.0.2)

The first equation of the above system is called the Gauss equation, and the
second and third equations are called the Codazzi equations.

The Fundamental Theorem of Surfaces in R3 states that: SupposeA1, A2, `11, `22

are smooth functions from O to R satisfying the Gauss-Codazzi equations
(1.0.1). Then given p0 ∈ O, q0 ∈ R3, and v1, v2, v3 an orthonormal basis
of R3, there exists an open subset O0 containing p0 and a unique smooth
immersion f : O0 → R3 such that the first and second fundamental form of
f are

I = A2
1dx

2
1 +A2

2dx
2
2, II = `11dx

2
1 + `x2dx

2
2,

f(p0) = q0, v1 = fx1 (p0)
A1

, and v2 = fx2 (p0)
A2

. Moreover, if two surfaces f, h :
O → R3 have the same I, II, then they are congruent, i.e., there is a rigid
motion φ of R3 such that h = φ ◦ f .

2. Surfaces in R3 with K = −1 and SGE

In geometry we are often interested in understanding geometric objects
whose invariants are of simplest kind. For example, in plane geometry we
have many theorems for equilateral, isoceles, and right triangles. The Guas-
sian and mean curvatures are the simplest kind of invariants for surfaces in
R3, so it is natural to study the geometry of surfaces in R3 whose K or H
are constants.

In this section, we will show the existence of Tchbyshef line of curvature
coordinates for surfaces in R3 with K = −1, and we also show that there is
a one-to-one correspondence between solutions of the sine-Gordon equation

qx1x1 − qx2x2 = sin q cos q SGE

and surfaces in R3 with K = −1 up to rigid motions.
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Theorem 2.0.3. If a surface in R3 has K = −1, then locally there exists
line of curvature parametrization such that the two fundamental forms are

I = cos2 q dx2
1 + sin2 q dx2

2, II = sin q cos q (dx2
1 − dx2

2)

for some function q. Moreover, the Gauss-Codazzi equation is the sine-
Gordon equation

qx1x1 − qx2x2 = sin q cos q. SGE (2.0.3)

Proof. Since K = k1k2 = −1, k1 is never equal to k2. So there exists line of
curvature parametrization locally. Thus we may assume that

I = A2
1dx

2
1 +A2

2dx
2
2, II = `11dx

2
1 + `22dx

2
2.

Since K = k1k2 = −1, so there exists a function q such that

k1 = tan q, k1 = − cot q

(q = tan−1 k1). But k1 = `11
A2

1
, k2 = `22

A2
2
, so

r1 =
`11

A1
= k1A1 = tan q A1,

r2 =
`22

A2
= k2A2 = − cot q A2.

We will use the first Codazzi equation to prove that A1
`11

is a function of x1

alone. It suffices to prove that
(
A1
`11

)
x2

= 0. But by the second equation of

(1.0.2), we have

(r1)x2 = (A1 tan q)x1 = (A1)x2 tan q +A1 sec2 q qx2

=
(A1)x2

A2
r2 = −(A1)x2

A2
A2 cot q = −(A1)x2 cot q.

Thus
(A1)x2(tan q + cot q) = −A1 sec2 q qx2 ,

But tan q + cot q = 1
sin q cos q , so we get

(A1)x2

A1
= − sin q

cos q
qx2 .

This implies that (lnA1 − ln cos q)x2 = 0, hence
(

ln A1
cos q

)
x2

= 0. It follows

from calculus that ln A1
cos q is a function of x1 alone, say c1(x1) for some one

variable function c1. So we have proved that
A1

cos q
= ec1(x1). (2.0.4)

Similarly, we use the third equation of (1.0.2) to conclude that
A2

sin q
= ec2(x2) (2.0.5)

for some one variable function c2.
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Define x̃i as a function of xi alone for i = 1, 2 such that

dx̃1

dx1
= ec1(x1),

dx̃2

dx2
= ec2(x2).

Then (x1, x2) 7→ (x̃1, x̃2) is a local diffeomorphism, and there is a local
inverse, i.e., we can write x1, x2 as functions of x̃1, x̃2. Next we compute the
two fundamental forms in (x̃1, x̃2) coordinate. Since

∂f

∂x̃i
=

∂f

∂xi

dxi
dx̃i

= fxie
−ci(xi),

g̃ij = fx̃i · fx̃j = e−ci(xi)−cj(xj)gij .
Use (2.0.4) and (2.0.5) in the following computations:

g̃11 = g11e
−2c1(x1) = A2

1e
−2c1(x1) =

(
A1

ec1(x1)

)2

= cos2 q,

g̃12 = 0,

g̃22 = g22e
−2c2(x2) = A2

2e
−2c2(x2) =

(
A2

ec2(x2)

)2

= sin2 q.

This shows that I = cos2 qdx̃2
1 + sin2 qdx̃2

2.
To compute II, we note that

˜̀
11 = k1Ã

2
1 = tan q cos2 q = sin q cos q,

˜̀
12 = 0

˜̀
22 = k2Ã

2
2 = − cot q sin2 q = − sin q cos q.

So II = sin q cos q (d̃x2
1 − dx̃2

2 and (x1, x2) are line of curvature coordinate
system.

To check the G-C equation, we compute

r̃1 =
˜̀
11

Ã1

=
sin q cos q

cos q
= sin q,

r̃2 =
˜̀
22

Ã2

=
− sin q cos q

sin q
= − cos q,

(A1)x2

A2
=
− sin q qx2

sin q
= −qx2 ,

(A2)x1

A1
=

cos q qx1

cos q
= qx1 .

The Codazzi equations (the second and the third equations of (1.0.2)) do
not give any extra condition on q. The Gauss equation (the first equation
of (1.0.2) gives SGE. �

As a consequence of the Fundamental Theorem of Surfaces, we have
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Theorem 2.0.4. Let O be an open disk in R2, and q : O → R a solution
of SGE such that q(x1, x2) ∈ (0, π2 ). Then given x0 ∈ O, p0 ∈ R3, and an
orthonormal basis {v1, v2, v3} of R3, there exists a unique surface f : O → R3

such that its fundamental forms are

I = cos2 q dx2
1 + sin2 q dx2

2,

and f(x0) = p0, fx1(x0) = cos q(x0)v1, fx2(x0) = sin q(x0)v2.

In other words, we have proved that there is a one-to-one correspondence
between solutions of SGE whose image lies in the interval (0, π2 ) and a surface
in R3 with K = −1 modulo rigid motions.

Next we review the proof of the Fundamental Theorem of Surfaces here,
and will see that when we do not assume any condition on the image of
a solution q we still can get a smooth map f , but now f fails to be an
immersion at points p where sin q(p) cos q(p) = 0, i.e., when q = nπ

2 for some
integer n. To get the immersion f , we need to solve the following first order
equation (see 162A Lecture Notes):

(f, e1, e2, e3)x1 = (e1, e2, e3)

A1 0 (A1)x2
A2

−r1

0 − (A1)x2
A2

0 0
0 r1 0 0


(f, e1, e2, e3)x2 = (e1, e2, e3)

 0 0 − (A2)x1
A1

0

A2
(A2)x1
A1

0 −r2

0 0 r2 0

 .

(2.0.6)

In general, if Ai vanishes at x0, then the right hand side is not continuous
at x0, so the above equation can not be solved in a neighborhood of x0. But
in the case for surfaces with K = −1, the trouble terms (A1)x2

A2
= −qx2 and

(A2)x1
A1

= qx1 are both well-defined smooth maps even when A1 or A2 vanish
at some points. So (2.0.6) becomes

(f, e1, e2, e3)x1 = (e1, e2, e3)

cos q 0 −qx2 − sin q
0 qx2 0 0
0 sin q 0 0


(f, e1, e2, e3)x2 = (e1, e2, e3)

 0 0 −qx1 0
sin q qx1 0 cos q

0 0 − cos q 0

 .

(2.0.7)

Since the right hand side is smooth, by Frobenius Theorem this system is
solvable. So we obtain a unique solution (f, e1, e2, e3) such that the initial
data at x0 is (p0, v1, v2, v3). Since fx1 = cos q e1 and fx2 = sin q e2, the map
f is an immersion if and only if sin q cos q 6= 0, i.e., when q(p) 6= kπ

2 for some
integer k. At points where q(p) = kπ

2 , the map f is still smooth at those
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points, but the rank of the Jacobian matrix of f at those points is 1. We
call such points a cusp singularity of f .

Remark. If we modify the MatLab project for the Fundamental Theorem of
Surfaces in line of curvature coordinates by using (2.0.7), then the program
should generate surfaces with K = −1 with cusp singularities when we input
a solution of SGE.

3. Tchbyshef asymptotic coordinates for K = −1 surfaces

The asymptotic lines for the hyperbola x2

a2 − y2

b2
= 1 are given by x2

a2 −
y2

b2
= 0. A quadratic curve ax2 + 2bxy + cy2 = 1 represents a hyperbola if

b2 − 4ac > 0, i.e., if det
(
a b
b c

)
< 0. We call the directions of the two lines

given by ax2 + 2bxy + cy2 = 0 the asymptotic directions for the quadratic
form ax2 + 2bxy + cy2. The second fundamental form of a surface f at
point p is a quadratic form on the tangent plane Tfp. Since K(p) = det(`ij)

det(gij)

and det(gij) > 0, det(`ij) < 0 if and only if K(p) < 0. In particular, if
K(p0) < 0, then there exists two linearly independent aysmptotic directions
for the quadratic form IIpo .

Definition 3.0.5. A non-zero tangent vector v ∈ Tfp0 is asymptotic if
IIp0(v, v) = 0. A parametrized surface f : O → R3 is parametrized by
asymptotic coordinates if `11 = `22 = 0, i.e., both fx1 and fx2 are asymptotic
vectors.

Suppose f : O → R3 is the Tchbyshef line of curvature parametrization
for a surface with K = −1 with

I = cos2 q dx2
1 + sinq dx2

2, II = sin q cos q (dx2
1 − dx2

2).

A tangent vector v = a1fx1 + a2fx2 is asymptotic if

II(v, v) = sin q cos q (a2
1 − a2

2) = 0,

or equivalently, a2
1 = a2

2. So v1 = fx1 +fx2 and v2 = fx1−fx2 are asymptotic
vectors. If we make the following change of coordinates{

s = x1+x2
2 ,

t = x1−x2
2 ,

then by the Chain rule fs = fx1 + fx2 and ft = fx1 − fx2 . So

f̃(s, t) = f(x1(s, t), x2(s, t)) = f(s+ t, s− t)
is an asymptotic parametrization. We compute I, II next. Since

fx1 · fx1 = cos2 q, fx1 · fx2 = 0, fx2 · fx2 = sin2 q,

g̃11 = fs · fs = (fx1 + fx2) · (fx1 + fx2) = cos2 q + sin2 q = 1.
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Similar computation gives

g̃12 = fs · ft = cos 2q, g̃22 = 1.

As a consequence, we see that the angle between the asymptotic vectors is
2q. We have proved that fs, ft are asymptotic vectors, hence ˜̀

11 = ˜̀
22 = 0.

It remains to compute ˜̀
12. Since

fx1x1 ·N = −fx2x2 ·N = sin q cos q, fx1x2 ·N = 0,

we have
˜̀
12 = fst ·N = (fx1 +fx2)x1−(fx1 +fx2)x2 = (fx1x1−fx2x2)·N = 2 sin q cos q.

So the fundamental form in (s, t) coordinate becomes

I = ds2 + 2 cos(2q) ds dt+ dt2, II = 4 sin q cos q ds dt = 2 sin(2q)ds dt.

We call (s, t) the Tchbyshef asymptotic coordinate system (parametrization).
Note that q satisfies the SGE. We want to write the SGE in (s, t) coordi-

nates. By Chain rule, we have

ux1 =
1
2

(us + ut), ux2 =
1
2

(us − ut),

so qx1x1 − qx2x2 = qst. Thus

qst = sin q cos q.

To summarize, we have proved that

Theorem 3.0.6. Locally there exists an asymptotic parametrization for a
surface with K = −1 such that

I = ds2 + 2 cos(2q) ds dt+ dt2, II = 4 sin q cos q ds dt = 2 sin(2q) ds dt,

where 2q is the angle between the asymptotic directions. Moreover, the
Gauss-Codazzi equation is

qst = sin q cos q. SGE

4. Change of parametrizations

We will show that although the two fundamental forms look different
when we use different parametrization of the same surface, they are the
same symmetric bilinear forms. To see this, we review some linear algebra
and material we taught in 162A, Let V be a vector space, and {v1, . . . , vn}
a basis of V . It is easy to check that the space V ∗ of all linear maps from V
to R is again a vector space. Now let v∗i denote the linear map from V to R
such that

v∗i (vj) = δij =

{
1, if i = j,

0, if i 6= j,

for 1 ≤ i ≤ n.
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Exercise 4.0.1. Prove that {v∗1, . . . , v∗n} is a basis of V ∗.

Suppose `1, `2 : V → R are linear maps. We define `1 ⊗ `2 : V × V → R
by

`1 ⊗ `2(ξ, η) = `1(ξ)`2(η)

for all ξ, η ∈ V . Let `1`2 : V × V → R denote the bilinear map defined by

`1`2 =
1
2

(`1 ⊗ `2 + `2 ⊗ `1),

i.e., `1`2(ξ, η) = 1
2(`1(ξ)`2(η) + `2(ξ)`1(η)).

Exercise 4.0.2. Prove that
(1) `1 ⊗ `2 is bilinear.
(2) `1`2 is symmetric bilinear.

Exercise 4.0.3. Let b : V × V → R be a bilinear map, v1, . . . , vn a basis of
V , v∗1, . . . , v

∗
n dual basis of V ∗, and bij = b(vi, vj).

(1) Prove that b =
∑n

i,j=1 bijv
∗
i ⊗ v∗j .

(2) Prove that b is symmetric if and only if bij = bji for all 1 ≤ i, j ≤ n.
(3) Prove that if b is symmetric then b =

∑n
i,j=1 bijv

∗
i v
∗
j .

Suppose f : O → R3 is a parametrized surface. The first fundamental
form Ip : Tfp × Tfp → R is defined by Ip(ξ, η) = ξ · η the dot product for
all ξ, η ∈ Tfp. It is easy to check that Ip is a symmetric bilinear map. Note
that {fx1(p), fx2(p)} is a basis of the tangent plane Tfp. Let dx1, dx2 be the
dual basis of Tf∗p . It follows from the above exercise that

I = g11dx
2
1 + 2g12dx1dx2 + g22dx

2
2,

where gij = fxi · fxj . Since Ip is defined without parametrization Ip(ξ, η) =
ξ · η, different parametrizations will give the same I.

The unit normal vector field to f is the map from O to the unit sphere
S2:

N(x1, x2) =
fx1 × fx2

||fx1 × fx2 ||
.

(N is also called the Gauss-map of the surface. The shape operator Ap is the
self-adjoint operator from Tfp to Tfp defined by Ap(fxi) = −Nxi . Now we
change parametrization of the surface by a diffeomorphism x = x(y) : O1 →
O, i.e., we use f̃(y) = f(x(y)) as a parametrization of the same surface. By
definition, the shape operator Ã for the new parametrization is the linear
operator defined by

Ã(f̃yi) = −Nyi .

We will show that A and Ã are the same. Because by Chain rule, we have

∂u

∂yi
=

∂u

∂x1

∂x1

∂yi
+

∂u

∂x2

∂x2

∂yi
.
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So

Ã(f̃yi) =
∂N

∂yi
= −

(
∂x1

∂yi
Nx1 +

∂x2

∂yi
Nx2

)
.

However, A(fyi) = A
(
∂x1
∂yi

fx1 + ∂x2
∂yi

fx2

)
and A is linear, we see that

A(fyi) = −
(
∂x1

∂yi
Nx1 +

∂x2

∂yi
Nx2

)
,

which is equal to Ã(fyi). This shows that the shape operator does not
depend on the choice of parametrization of a surface.

The second fundamental form is the bilinear form associated to the shape
operator:

IIp(ξ, η) = Ap(ξ) · η
for all ξ, η ∈ Tfp. Since the shape opeartor is independent of parametrization
of the surface, so is II. Note that the mean curvature H and the Gaussian
curvature K are the trace and the determinant of the shape operator. This
shows that H and K are well-defined function on the surface, independent
of parametrizations.

5. Calculus of variations of one variable

In this section, C1 means continuously differentiable. Let C1([a, b],R2)
denote the space of all C1 maps x : [a, b]→ R2 (i.e., x is a differentiable and
its derivative x′ is continuous). Fix p0, q0 ∈ R2, let C1([a, b],R2)p0,q0 denote
the set of all x ∈ C1([a, b],R2) such that x(a) = p0 and x(b) = q0.

A function J : C1([a, b],R2)p0,q0 → R is called a a calculus of variations
functional if it has the form

J(x) = JL(x) =
∫ b

a
L(t, x(t), x′(t)) dt,

where
L : [a, b]× R2 × R2 → R

is a C1 map. We call L the Lagrangian function associated to the functional
J .

To motivate the definitions of directional derivative and critical points of
J , we review these definitions for f : Rn → R. The directional derivative of
f at p0 in the direction v is d

ds

∣∣
s=0

f(p0 + sv). A point p0 is a critical point
of f if ∂f

∂xi
(p0) = 0 for all 1 ≤ i ≤ n. Given v = (v1, . . . , vn), the directional

derivative

Dfv(p0) =
d

ds

∣∣∣∣
s=0

f(p0 + sv) =
n∑
i=1

∂

∂xi
(p0)vi.

So the following statements are equivalent:
(i) p0 is a critical point of f ,
(ii) all directional derivatives of f at p0 are zero,
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(iii) d
ds

∣∣
s=0

f(σ(s)) = 0 for all smooth curve σ : (−ε, ε)→ Rn with σ(0) =
p0. equation

The functional J is a function on the vector space C1([a, b],R2)p0,q0 , so
we can define directional derivatives and critical points of J in the same
manner as for f : Rn → R.

The directional derivative of JL.

Let x0 = (x0
1, x

0
2) ∈ C1([a, b],R2)p0,q0 , and h = (h1, h2) ∈ C1([a, b],R2)0,0,

i.e., h(a) = h(b) = 0. Note that xs = x0 + sh is in C1([a, b],R2)p0,q0 for all
s ∈ R. Let us find the derivative of JL(xs) with respect to s at s = 0:

d

ds

∣∣∣∣
s=0

JL(xs) =
∫ b

a
L(t, xs(t), (xs)′(t)) dt

=
∫ b

a

d

ds

∣∣∣∣
s=0

L(t, x0(t) + sh(t), (x0)′(t) + sh′(t)) dt, by chain rule,

=
∫ b

a

∂L

∂x1
(t, x0(t), (x0)′(t))h1(t) +

∂L

∂x2
(t, x0(t), (x0)′(t))h2(t)

+
∂L

∂x′1
(t, x0(t), (x0)′(t))h′1(t) +

∂L

∂x′2
(t, x0(t), (x0)′(t))h′2(t) dt.

Next we want to use integration by part,
∫ b
a f
′(t)g(t)dt = f(t)g(t)

∣∣∣∣b
a

−∫ b
a f(t)g′(t) dt, to change h′i to hi in the above integration. First note that

since hi(a) = hi(b) = 0 for i = 1, 2, we have∫ b

a

d

dt

(
∂L

∂x′i
hi(t)

)
dt = 0,

and hence ∫ b

a

∂L

∂x′i
h′i +

(
∂L

∂x′i

)′
hi dt = 0.

So∫ b

a

∂L

∂x′1
(t, x0(t), (x0)′(t))h′1(t) +

∂L

∂x′2
(t, x0(t), (x0)′(t))h′2(t) dt

= −
∫ b

a

(
∂L

∂x′1
(t, x0(t), (x0)′(t))

)′
h1(t) +

(
∂L

∂x′2
(t, x0(t), (x0)′(t))

)′
h2(t) dt.

Thus the formula for the derivational derivative of J at x0 in the direction
h is

d

ds

∣∣∣∣
s=0

JL(xs) =
∫ b

a

(
∂L

∂x1
−
(
∂L

∂x′1

)′)
h1 +

(
∂L

∂x2
−
(
∂L

∂x′2

)′)
h2 dt.

(5.0.8)
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x0 is called a critical point of JL if this directional derivatives is zero for all
choices of h ∈ C1([a, b],R2)0,0. This will certainly be the case if the following
so-called Euler-Lagrange equation is satisfied:

∂L

∂xi
=

d

dt

(
∂L

∂x′i

)
, i = 1, 2. (5.0.9)

The following is the fundmental lemma of calculus of variations:

Lemma 5.0.7. Let f = (f1, . . . , fn) : [a, b] → Rn be a C1 map. Suppose
that

∫ b
a

∑n
i=1 fi(t)hi(t) dt = 0 for all C1 maps h = (h1, . . . , hn) : [a, b]→ Rn

with h(a) = h(b) = 0. Then f = 0.

Proof. We prove this by contracdition. It suffices to prove the case when
n = 1. Suppose f is not the zero function, there there exists c ∈ (a, b)
such that f(c) 6= 0. Say f(c) > 0. Then there exists ε > 0 such that
(c − ε, c + ε) ⊂ (a, b) and f(t) > 0 for all t ∈ (c − ε, c + ε), Choose a C1

function g : [a, b] → R such that g > 0 on (c − ε, c + ε), g = 0 outside
[c− ε, c+ ε]. Then∫ b

a
f(t)g(t) dt =

∫ c+ε

c−ε
f(t)g(t) dt > 0,

which contradicts to the assumption that
∫ b
a f(t)h(t) dt = 0 for all C1 h

with h(a) = h(b) = 0. �

As a consequence of Lemma 5.0.7 and (5.0.8), we get

Theorem 5.0.8. x : [a, b] → R2 is a critical point of JL if and only if x
satisfies the Euler-Lagrage equation (5.0.9).

Example 5.0.9. Let

J(x) =
∫ b

a

1
2

((x′1(t))2 + (x′2(t))2) dt.

Then L(t, x1, x2, x
′
1, x
′
2) = 1

2((x′1)2 + (x′2)2). The Euler-Lagrange equation
for J is computed as follows:

∂L

∂xi
= 0 =

(
∂L

∂x′i

)′
= (x′i)

′ = x′′i .

In other words, the Euler-Lagrange equation for J is x′′i = 0 for i = 1, 2. So
x(t) = c0 + c1t for some c0, c1 ∈ R2, i.e., x is a straight line. Since x(a) = p0

and x(b) = q0, x(t) = p0 + (t−a)
b−a (q0 − p0).

Example 5.0.10. Newtonian mechanics in R2

We consider a particle p of mass m moving in the plane R2 under Newton’s
Laws of Motion. In physics it is shown that Newton’s Third Law implies
that the force F = (F1, F2) acting on p is derivable from a potential V , i.e.,
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there is a smooth function V : R2 → R such that Fi = − ∂V
∂xi

for i = 1, 2 (i.e.,
F = −∇V ). The kinetic energy function is

K(x′) =
m

2
((x′1)2 + (x′2)2).

Define the Lagrange

L = K − V =
m

2
((x′1)2 + (x′2)2)− V (x1, x2).

The functional L(x) =
∫ b
a L(x, x′) dt is called the action in physics. Since

∂L

∂xi
= −∂V

∂xi
,

∂L

∂x′i
= mx′i,

the Euler-Lagrange equation is

−∂V
∂xi

= (mx′i)
′ = mx′′i ,

or

mx′′i = −∂V
∂xi

= Fi.

In other words, we have proved that the Euler-Lagrange equation for the
action functional L =

∫ b
a K − V dt is the Newton’s equation F = ma, i.e.,

the force F is equal to the mass times the acceleration.

6. Initial value problem for second order ODEs

A system of second order ODEs is of the form

x′′i = fi(t, x1, . . . , xn, x
′
1, . . . , x

′
n), 1 ≤ i ≤ n. (6.0.10)

This can be solved using the existence and uniqueness of systems of first
order ODE by introducting new variables: Consider the following system of
first order ODE:{

x′i = yi, 1 ≤ i ≤ n,
y′i = fi(t, x1, . . . , xn, y1, . . . , yn), 1 ≤ i ≤ n.

(6.0.11)

It is easy to see that if x(t) = (x1(t), . . . , xn(t)) is a solution of (6.0.10), then
(x, y) = (x, x′) is a solution of (6.0.11). Conversely, if (x, y) is a solution of
(6.0.11), then x is a solution of (6.0.10). By the uniqueness of ODE, we know
that given initial condition p0, q0 ∈ Rn, there exists a unique solution (x, y)
of (6.0.11) such that x(0) = p0 and y(0) = q0. Thus given p0, q0 ∈ Rn, there
exists a unique solution x(t) of the second order system (6.0.10) such that
x(0) = p0 and x′(0) = q0. In other words, to solve the initial value problem
for the second order ODE system (6.0.10) we need to give the initial position
x(0) and initial velocity x′(0).
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7. Energy functional

Let f : O → R3 be a parametrized surface, and I =
∑2

i,j=1 gijdxidxj the
first fundamental form. The energy functional E : C1([a, b],O)p0,q0 → R is

E(x) =
∫ b

a

2∑
i,j=1

gij(x1(t), x2(t))x′i(t)x
′
j(t) dt,

i.e.,

E(x) =
∫ b

a
||γ′(t)||2dt, where γ(t) = f(x(t)).

We want to compute the Euler-Lagrange equation for E . Before we do the
general computation, let us do the following simple example:

Example 7.0.11. (Energy functional on S2) We use the spherical
parametrization of S2:

f(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ).

Then

I = dφ2 + sin2 φ dθ2.

The energy Lagrangian for S2 is E = (φ′)2 + sin2 φ (θ′)2. Note

∂E

∂φ
= 2 sinφ cosφ (θ′)2,(

∂E

∂φ′

)′
= (2φ′)′ = 2φ′′,

∂E

∂θ
= 0,(

∂E

∂θ′

)′
= (2 sin2 φ θ′)′ = 4 sinφ cosφ φ′ θ′ + 2 sin2 φ θ′′.

So the E-L equation is{
φ′′ = sinφ cosφ(θ′)2,

4 sinφ cosφ φ′θ′ + 2 sin2 φ θ′′ = 0,

i.e., {
φ′′ = sinφ cosφ (θ′)2,

θ′′ = −2 cosφ
sinφ φ′θ′.
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Next we compute the E-L for the energy functional for an arbitrary surface
f . Since E =

∑
ij gij(x1, x2)x′ix

′
j ,

∂E

∂xk
=
∑
k

gij,kx
′
kx
′
ix
′
j ,

(
∂E

∂x′k

)′
=

(
2
∑
i

gikx
′
i

)′
= 2

∑
i,m

gik,mx
′
mx
′
i +
∑
i

gikx
′′
i

 ,

where gij,k = ∂gij

∂xk
. So the E-L equation is

2
∑
i

gikx
′′
i + 2

∑
i,m

gik,mx
′
ix
′
m −

∑
i,j

gij,kx
′
ix
′
j = 0.

But ∑
i,m

gik,mx
′
ix
′
m =

∑
i,j

gik,jx
′
ix
′
j =

∑
i,j

gjk,ix
′
jx
′
i.

(Here we replace m by j to get the first identity, and then exchange i, j to
get the second identity). So

2
∑
i,m

gik,mx
′
ix
′
m =

∑
i,j

(gik,j + gjk,i)x′ix
′
j ,

and hence the E-L equation for E can be written as

2
∑
i

gikx
′′
i +

∑
i,j

(gki,j + gjk,i − gij,k)x′ix′j = 0,

i.e., ∑
i

gikx
′′
i +

1
2

∑
i,j

(gki,j + gjk,i − gij,k)x′ix′j = 0.

Recall that we used the following notation

[ij, k] := gki,j + gjk,i − gij,k
when we derived of the G-C equation in general coordinates in 162A. Use
this notation, the E-L equation for the energy functional can be written as∑

i

gikx
′′
i +

1
2

∑
i,j

[ij, k]x′ix
′
j = 0.

We want to write this system of ODE in the form of (6.0.11). We can do
this as follows: Let G denote the 2× 2 matrix (gij), and gij the ij-th entry
of the inverse matrix G−1. Multiply the above equation by gk` then sum
over k to get ∑

k,i

gk`gikx
′′
i +

1
2

∑
i,j,k

gk`[ij, k]x′ix
′
j = 0.



16

Note that G and G−1 are symmetric matrices, and the i`-th entry of GG−1

is
∑

k gikg
k`. But GG−1 = I, so

∑
k gikg

k` = δi`. Then we get

∑
i

δi`x
′′
i +

1
2

∑
i,j,k

gk`[ij, k]x′ix
′
j = 0,

Recall that we use the following notation in the G-C equation:

Γ`ij :=
1
2

∑
k

gk`[ij, k].

So the E-L equation for the energy functional can be written as

x′′` +
∑
i,j

Γ`ijx
′
ix
′
j = 0, ` = 1, 2. (7.0.12)

We summarize what we have proved below:

Theorem 7.0.12. x : [a, b]→ R2 is a critical point of the energy functional
E if and only if x satisifes (7.0.12).

Next we want to prove that if x is a critical point of the energy functional
for the surface f : O → R3, then the curve γ(t) = f(x(t)) is travelled at
constant speed:

Theorem 7.0.13. If x is a critical point of the energy functional E, then

E(x) =
∑
i,j

gij(x(t))x′i(t)x
′
j(t) = ||γ′(t)||2

is a constant, where γ(t) = f(x(t)).

Proof. It suffices to prove that (
∑

i,j gij(x)x′ix
′
j)
′ = 0. But

(
∑
i,j

gijx
′
ix
′
j)
′ =

∑
i,j,k

gij,kx
′
kx
′
ix
′
j +

∑
i,j

gijx
′′
i x
′
j +

∑
i,j

gijx
′
ix
′′
j .

But x satisfies the E-L equation

x′′k +
∑
i,j

Γkijx
′
ix
′
j = 0.
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So ∑
i,j

gijx
′
ix
′
j

′

=
∑
i,j,k

gij,kx
′
kx
′
ix
′
j −

∑
i,j,k,m

gijΓik,mx
′
kx
′
mx
′
j −

∑
i,j

gijx
′
i

∑
k,m

Γjkmx
′
kx
′
m

=
∑
i,j,k

gij,kx
′
ix
′
jx
′
k −

∑
i,j,k,m

gijΓikmx
′
kx
′
mx
′
j − gijΓ

j
kmx

′
ix
′
kx
′
m

=
∑
i,j,k

gij,kx
′
ix
′
jx
′
k −

∑
i,j,k,m

gmjΓmkix
′
kx
′
ix
′
j − gimΓmkjx

′
ix
′
jx
′
k

=
∑
i,j,k

gij,k − 1
2

∑
m,`

gmjg
m`[ki, `]− 1

2
gmig

m`[kj, `]

x′ix
′
jx
′
k

=
∑
i,j,k

(gij,k −
1
2

∑
`

δj`[ki, `]−
1
2
δi`[kj, `])x′ix

′
jx
′
k

=
∑
i,j,k

(gij,k −
1
2

[ki, j]− 1
2

[kj, i])x′ix
′
jx
′
k

=
∑
i,j,k

(gij,k −
1
2

(gij,k + gjk,i − gki,j + gji,k + gik,j − gkj,i))x′ix′jx′k = 0.

(From the second line to the third line, we interchange m, i of the second
term and m, j of the third term.) �

8. Arc length functional

Let f : O → R3 be a parametrized surface, Σ = f(O), and I =
∑

ij gijdxidxj
the first fundamental of f . A smooth curve x : [a, b] → O gives rise to a
curve γ = f ◦ x on the surface Σ, and the arc length of γ is

L(x) =
∫ b

a
||γ′(t)|| dt =

∫ b

a

√√√√ 2∑
i,j=1

gij(x(t))x′i(t)x
′
j(t) dt.

A curve γ = f ◦ x on Σ is called a geodesic if x is a critical point of the
arc length functional L. Let E =

∑2
i,j=1 gij(x(t))x′i(t)x

′
j(t) denote the La-

grangian of the energy functional E . The E-L equation for the energy func-
tional E is

∂E

∂xi
=
(
∂E

∂x′i

)′
, i = 1, 2. (8.0.13)
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Let L denote the Lagrangian for the arc length functional L. Then L =
√
E.

The E-L equation for L is

∂
√
E

∂xi
=

(
∂
√
E

∂x′i

)′
,

so the E-L equation for L is

1
2
√
E

∂E

∂xi
=
(

1
2
√
E

∂E

∂x′i

)′
, i = 1, 2. (8.0.14)

Proposition 8.0.14. Let f : O → R3 be a parametrized surface. If x is
a critical point of the energy functional E, then x is a critical point of the
arc length functional L. Conversely, if x is a critical point of L such that
|| ddtf(x(t))|| is constant, then x is a critical point of E.

Proof. By Theorem 7.0.13, E =
∑2

i,j=1 gij(x(t))x′i(t)x
′
j(t) is a constant c.

Since x satisfies (8.0.13) and E is constant, x satisfies (8.0.14), so x is a
critical point of L. The converse is proved the same way. �

We want to prove below that if x : [a, b]→ O is a critical point of L and
t = t(s) is a diffeomorphism from [a, b] to [a, b], then x̃(s) = x(t(s)) is also a
critical point of L. This follows from the following theorem:

Theorem 8.0.15. Let V be a vector space, φ : V → V a diffeomorphism,
and F : V → R a smooth function. Suppose F ◦ φ−1 = F . Then p0 ∈ V is
a critical point of F implies that φ(p0) is also a critical point of F .

Proof. Note that p0 is a critical point of F if and only if d
dt

∣∣
t=0

F (x(t)) = 0
for all smooth curve x : (−δ, δ) → V such that x(0) = p0. To prove that
φ(p0) is a critical point, let y : (−δ, δ) → V be a smooth curve such that
y(0) = φ(p0). Then x = φ−1 ◦ y is a curve with x(0) = p0. But

F (y(t)) = F (φ−1(y(t)) = F (x(t)),

so
d

dt

∣∣∣∣
t=0

F (y(t)) =
d

dt

∣∣∣∣
t=0

F (x(t)),

which is zero because p0 is a critical point of F and x is a curve with
x(0) = p0. This proves that φ(p0) is also a critical point of F . �

The condition F = F◦φ−1 is equivalent to F = F◦φ because F (φ−1(φ(x))) =
F (φ(x)) implies that F (x) = F (φ(x)).

The above Theorem says that if a function F is invariant under a trans-
formation φ, then φ(p0) is a critical point of F if p0 is.

Proposition 8.0.16. Let t = t(s) is a diffeomorphism from [a, b] to [a, b],
and φ : C([a, b],O) → C([a, b],O) defined by φ(x)(s) = x(t(s)). Then if x0

is a critical point of L, then φ(x0) is also a critical point of L.
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Proof. Note that γ(t) = f(x(t)) and γ̃(s) = f(x(t(s))) trace out the same
curve on the surface Σ. So the arc length of γ and γ̃ are the same. This
proves that L(x) = L(φ(x)). By Theorem 8.0.15, φ(x0) is a critical point of
L. �

Suppose x0 is a critical point of L and the arc length of γ0 = f(x0) is `.
We claim that we can change parameter of γ0 to a new parameter s such
that ||dγ

0

ds || is the constant `
b−a . But

`

b− a
= ||dγ

0

ds
|| = ||dγ

0

dt

dt

ds
|| = ||dγ

0

dt
|| | dt
ds
|,

so if we choose the new parameter s such that

dt

ds
=

`

(b− a)||dγ0

dt ||
,

then ||dγ
0

ds || = `
b−a . This proves the claim. By Proposition 8.0.16, y0(s) =

x(t(s)) is a critical point of L. But || ddsf(y0(s))|| is constant, so by Propo-
sition 8.0.14, y0 is a critical point of E . This shows that to construct all
geodesics of the surface Σ, it suffices to solve the E-L equation (7.0.12) for
the energy functional E . Therefore we will call (7.0.12) the geodesic equation.

A curve γ : [a, b] → R3 is said to be parametrized proportional to its arc
length if its speed is constant, i.e., ||dγdt || is a constant for all t ∈ [a, b].

We like to give a geometric calculation for the geodesic equation. Recall
that we proved in 162A that if f : O → R3 is a parametrized surface with
I =

∑
ij gijdxidxj and II =

∑
ij `ijdxidxj , then

fxixj = Γ1
ijfx1 + Γ2

ijfx2 + `ijN, (8.0.15)

where Γijk = 1
2

∑
m g

im[jk,m], and N the unit normal of f . We will use
(8.0.15) to give a simple criterion for a curve γ = f ◦ x on the surface f to
be a geodesic.

Theorem 8.0.17. Let γ = f ◦ x be a curve on the surface f that is
parametrized proportional to its arc length. Then γ is a geodesic if and
only if γ′′(t) is normal to f at γ(t) for all t. Moreover, if γ is a geodesic
then

γ′′(t) = II(γ′(t), γ′(t)) N(γ(t)).
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Proof. Chain rule gives γ′ =
∑

i fxix
′
i, and

γ′′(t) =
∑
i,j

fxixjx
′
ix
′
j +

∑
i

fxix
′′
i

=
∑
i,j

((∑
k

Γkijx
′
ix
′
j fxk

)
+ `ijx

′
ix
′
j N

)
+
∑
i

fxix
′′
i

=
∑
i,j

((∑
k

Γkijx
′
ix
′
j fxk

)
+ `ijx

′
ix
′
j N

)
+
∑
k

fxk
x′′k

=
∑
k

x′′k +
∑
ij

Γkijx
′
ix
′
j

 fxk
+
∑
i,j

`ijx
′
ix
′
j N.

So γ′′(t) is normal if and only if

x′′k +
∑
i,j

Γkijx
′
ix
′
j = 0

for k = 1, 2, i.e., x satisfies (7.0.12), or equivalently, γ is a geodesic. �

Example 8.0.18. We can use Theorem 8.0.17 to get geodesics of the unit
sphere in R3 easily by observing that if α is a great circle, then α′′ is the
radial vector of the great circle, so α′′(t) is the unit normal to S2 at α(t).
This implies that α′′(t) is normal to S2, by Theorem 8.0.17, α is a geodesic.

9. Calculus of variations of two variable

Let O be an open subset of R2 such that the boundary ∂O is a smooth
curve, i.e., there is a smooth parametrization α : [a, b] → R2 for ∂O. Let
γ : ∂O → R a fixed smooth function, and O = O ∪ ∂O. Let Cγ(O,R)
denote the space of smooth functions u : O → R such that u |∂O = γ.
A two variable Lagrangian is a smooth function L : O × R × R × R → R,
and the variational functional associated to the Lagrangian L is the map
J = JL : Cγ(O,R)→ R defined by

J(u) =
∫ ∫

O
L(x, y, u(x, y), ux(x, y), uy(x, y)) dxdy.

We will use x, y, u, p, q to denote the variables of L, i.e., L = L(x, y, u, p, q).
A function u0 : O → R is called a critical point of J if all the directional
derivatives of J at u0 is zero, i.e.,

d

ds

∣∣∣∣
s=0

J(u0 + sh) = 0

for all smooth h : O → R with h | ∂O = 0. We will calculate the same way as
in the calculus of variations of one variable. Recall that in that calculation,
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we need the fundamental lemma and the Fundamental Theorem of Calculus
of one variable. As we will see below that to calculate the condition that u0 is
a critical point, we will need the two dimensional versions of the fundamental
lemma and of the Fundamental Theorem of Calculus.

Given a ∈ R, let φa : R→ R be the function defined by

φa(x) =

{
exp(−(x− a)−2), x > a,

0, x ≤ a.

Exercise 9.0.4. Prove that limx→a+ φa(x) = 0, and the limits of derivatives
of φa of any order tends to zero as x→ a+. (This proves that φa is a smooth
function).

Exercise 9.0.5. Let ψa : R→ R be the map defined by ψa(x) = φ−a(−x).
Prove that

ψa(x) =

{
e−(x−a)−2

, x < a,

0, x ≥ a.
.

Exercise 9.0.6. Given a < b, let ha,b : R → R be the function defined by
ha,b(x) = φa(x)ψb(x). Prove that ha,b is smooth, ha,b > 0 on (a, b) and is
zero outside (a, b).

Lemma 9.0.19. Suppose f : O → R is continuous, and∫ ∫
O
f(x, y)h(x, y) dxdy = 0

for all h : O → R with h | ∂O = 0. Then f = 0.

Proof. Suppose f is not identically zero. Then there exists (x0, y0) ∈ O
such that f(x0, y0) 6= 0. We may assume that f(x0, y0) > 0. Since f is
continuous, there exists ε > 0 such that f(x, y) > 0 for all (x, y) in the
square

D = {(x, y) | |x− x0| < ε, |y − y0| < ε}.

Let ha,b be the smooth function constructed in the above Exercise, and
kD : R2 → R the map defined by

kD(x, y) = hx0−ε,x0+ε(x)hy0−ε,y0+ε(y).

It is easy to see that kD is smooth, kD(x, y) > 0 if (x, y) ∈ D and is zero
outside D. In particular, hD | ∂O = 0. But fhD is positive in O, so∫ ∫

O
fhD dxdy =

∫ ∫
D̄
fhD dxdy,

which is positive because both f and hD are positive on D, a contradiction.
�
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Next we recall the Green’s formula, which can be viewed as the two di-
mensional version of the Fundamental Theorem of Calculus. First recall
that the line integral ∮

∂O
P (x, y) dx+Q(x, y) dy

is computed as follows: Choose a parametrization of the boundary ∂O, say
α : [a, b]→ R2 with α(t) = (x(t), y(t)). Then∮
∂O
P (x, y) dx+Q(x, y) dy =

∫ b

a
P (x(t), y(t))x′(t) +Q(x(t), y(t))y′(t) dt.

Theorem 9.0.20. (Green’s formula)
Let P,Q : O → R be smooth functions. Then∮

∂O
P dx+Q dy =

∫ ∫
O

(−Px +Qy) dxdy.

Corollary 9.0.21. If P | ∂O = 0 and Q | ∂O = 0, then∫ ∫
O

(−Px +Qy) dxdy = 0.

(This is because the line integral is zero).
Next we compute the directional derivative of J at u in the direction h,

where u ∈ Cγ(O,R) and h : O → R satisfying h | ∂O = 0.

d

ds

∣∣∣∣
s=0

J(u+ sh) =
d

ds

∣∣∣∣
s=0

∫ ∫
O
L(x, y, u+ sh, (u+ sh)x, (u+ sh)y) dxdy

=
d

ds

∣∣∣∣
s=0

∫ ∫
O
L(x, y, u+ sh, ux + shx, uy + shy) dxdy

=
∫ ∫

O

d

ds

∣∣∣∣
s=0

L(x, y, u+ sh, ux + shx, uy + shy) dxdy

=
∫ ∫

O

∂L

∂u
(x, y, u, ux, uy)h(x, y) +

∂L

∂p
(x, y, u, ux, uy)hx(x, y)

+
∂L

∂q
(x, y, u, ux, uy)hy(x, y) dxdy.

=
∫ ∫

O

∂L

∂u
h+

(
∂L

∂p
h

)
x

−
(
∂L

∂p

)
x

h dxdy

+
(
∂L

∂q
h

)
y

−
(
∂L

∂q

)
y

h dxdy.

The Green’s formula implies that∫ ∫
O

(
∂L

∂p
h

)
x

+
(
∂L

∂q
h

)
y

dxdy =
∮
∂O

∂L

∂p
h dy − ∂L

∂q
h dx.
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Since h | ∂O = 0, by Corollary 9.0.21 the right hand side is zero. So we get

d

ds

∣∣∣∣
s=0

J(u+ sh) =
∫ ∫

O

(
∂L

∂u
−
(
∂L

∂p

)
x

−
(
∂L

∂q

)
y

)
h dxdy.

Here (
∂L

∂p

)
x

=
(
∂L

∂p
(x, y, u, ux, uy)

)
x

,(
∂L

∂q

)
y

=
(
∂L

∂q
(x, y, u, ux, uy)

)
y

.

We will use the conventional notation ∂L
∂ux

to denote ∂L
∂p and ∂L

∂uy
to denote

∂L
∂q . By Lemma 9.0.19, we get

Theorem 9.0.22. u is a critical point of J if and only if

∂L

∂u
−
(
∂L

∂ux

)
x

−
(
∂L

∂uy

)
y

= 0. (9.0.16)

Equation (9.0.16) is called the Euler-Lagrange equation for J = JL.

Example 9.0.23. Let

J(u) =
∫ ∫

O

1
2
(
(ux)2 + (uy)2

)
dxdy.

Then L(x, y, u, p, q) = 1
2(p2 + q2),

∂L

∂u
= 0,

∂L

∂p
= p,

∂L

∂q
= q.

To get the E-L equation, we need to substitute p = ux and q = uy, so
0− (ux)x − (uy)y = 0, i.e., the E-L equation is the Laplace equation

uxx + uyy = 0.

Example 9.0.24. Let

J(u) =
∫ ∫

O
u2
x + uxuy + u2

y − cosu+ (x2 + y2)u dxdy.

So L(x, y, u, p, q) = p2 + pq + q2 − cosu+ (x2 + y2)u, and

∂L

∂u
= sinu− (x2 + y2),

∂L

∂p
= 2p+ q,

∂L

∂q
= p+ 2q.

Substitue p = ux and q = uy to see that the E-L equation is

0 = sinu− (x2 + y2)− (2ux + uy)x − (ux + 2uy)y = 0

= sinu− (x2 + y2)− (2uxx + uyx + uxy + 2uyy)

= sinu− (x2 + y2)− (2uxx + 2uxy + 2uyy).
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Example 9.0.25. Let

J(u) =
∫ ∫

O
(1 + u2

x + u2
y)

1
2 .

So L(x, y, u, p, q) = (1 + p2 + q2)
1
2 and

∂L

∂u
= 0,

∂L

∂p
= p(1 + p2 + q2)−

1
2 ,

∂L

∂q
= q(1 + p2 + q2)−

1
2 .

The E-L equation is

0 =
∂L

∂u
−
(
∂L

∂p

)
x

−
(
∂L

∂q

)
y

= 0− (ux(1 + u2
x + u2

y)
− 1

2 )x − (uy(1 + u2
x + u2

y)
− 1

2 )y

= (1 + u2
x + u2

y)
−3/2

(
(1 + u2

y)uxx + (1 + u2
x)uyy − 2uxuyuxy

)
.

10. Area functional

Let u : O → R be a smooth function, and

f(x, y) = (x, y, u(x, y))

the graph of u. We have seen in 162A that the two fundamental forms for
f are

I = (1 + u2
x) dx2 + 2uxuy dxdy + (1 + u2

y) dy
2,

II =
1√

1 + u2
x + y2

y

(
uxx dx

2 + 2uxy dxdy + uyy dy
2,
)

and the mean curvature is

H =
(1 + u2

x)uyy − 2uxuyuxy + (1 + u2
y)uxx

(1 + u2
x + u2

y)3/2
.

Compute directly to see that

det(gij) = (1 + u2
x)(1 + u2

y)− (uxuy)2 = (1 + u2
x + u2

y).

So the area of the graph of u (i.e., surface f) is

J(u) =
∫ ∫

O

√
det(gij) dxdy =

∫ ∫
O

(1 + u2
x + u2

y)
1/2 dxdy.

We have computed the E-L equation for this functional in Example 9.0.25
and see that
d

ds

∣∣∣∣
s=0

J(u+ sh) =
∫ ∫

O
−

(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx
(1 + u2

x + u2
y)3/2

h dxdy

=
∫ ∫

O
−Hh dxdy.
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So the E-L equation for the area functional is H = 0. This gives another
geometric meaning of the mean curvature. In particular, the surface that
has minimum surface area among all surfaces in R3 with a fixed boundary
must have zero mean curvature.

Definition 10.0.26. A surface in R3 is minimal if its mean curvature is
zero.

Remark. It follows from physics that if we dip a closed wire frame into a
soap solution, then the soap film surface spanned by the wire frame when we
take out the frame must be minimal. So we sometimes call minimal surfaces
soap films.

11. Minimal surfaces

11.1. Minimal surfaces and harmonic functions.

Definition 11.1.1. A surface f : O → R3 is said to be parametrized by
isothermal coordinates if I = λ2(x1, x2)(dx2

1 + dx2
2), i.e., g11 = g22 and g12 =

0. Or equivalently,

fx1 · fx1 = fx2 · fx2 , fx1 · fx2 = 0.

Theorem 11.1.2. Suppose f : O → R3 is parametrized by isothermal coor-
dinates with I = λ2(dx2

1 + dx2
2). Then

fx1x1 + fx2x2 = λ2HN, (11.1.1)

where H is the mean curvature and N is the unit normal vector field of f .

Proof. First we want to use the isothermal condition, fx1 ·fx1 = fx2 ·fx2 = λ2

and fx1 · fx2 = 0, to conclude that

(fx1x1 + fx2x2) · fxi = 0, i = 1, 2,

which implies that fx1x1 + fx2x2 is parallel to the unit normal N of the
surface. To do this, we take derivatives of the isothermal condition:

(fx1 · fx1)x1 = 2fx1x1 · fx1 = (fx2 · fx2)x1 = 2fx1x2 · fx2

= 2((fx1 · fx2)x2 − fx1 · fx2x2) = 2(0− fx1 · fx2x2) = −2fx2x2 · fx1 ,

so (fx1x1 + fx2x2) · fx1 = 0. Similar calculation implies that

(fx1x1 + fx2x2) · fx2 = 0,

thus fx1x1 + fx2x2 must be parallel to N . But

fxixj = Γ1
ijfx1 + Γ2

ijfx2 + `ijN,

where II = `11dx
2
1 +2`12dx1dx2 +`22dx

2
2 and Γijk = 1

2

∑
m g

im[jk,m]. There-
fore we have

fx1x1 + fx2x2 = (
∑
i

Γ1
ii)fx1 + (

∑
i

Γ2
ii)fx2 + (`11 + `22)N.
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But we have shown that fx1x1 + fx2x2 is parallel to N , so the coefficients of
fxi in fx1x1 + fx2x2 are zero and we get

fx1x1 + fx2x2 = (`11 + `22)N. (11.1.2)

Recall that the mean curvature H is given by the following formula

H =
g11`22 − 2g12`12 + g22`11

det(gij)
,

so H = λ2(`11+`22)
λ4 = `11+`22

λ2 , which implies that `11 + `22 = λ2H. Substitute
this into (11.1.2) to get (11.1.1). �

Definition 11.1.3. A smooth function u : O → R is called harmonic if

ux1x1 + ux2x2 = 0.

The operator 4 = ∂1

∂x2
1

+ ∂2

∂x2
2

is called the Laplace operator and 4u =
ux1x1 + ux2x2 = 0 is called the Laplace equation.

Corollary 11.1.4. Suppose f = (u, v, w) : O → R3 is parametrized by
isothermal coordinates. Then the following statements are equivalent:

(1) f is minimal,
(2) fx1x1 + fx2x2 = (0, 0, 0),
(3) u, v, w are harmonic functions.

Remark. We have seen that a surface f : O → R3 with H = 0 is a critical
point of the area functional. But this surface need not have minimum area
among all surfaces in R3 that having the same boudary as f(O). However,
it is a theorem of PDE that if we take any small enough piece Ω of f(O),
the surface Ω has the minimum area among all surfaces that have the same
boundary of Ω.

Example 11.1.5. (Caternoid)
Let a > 0 be a constant, and

f(x1, x2) = (a coshx2 cosx1, a coshx2 sinx1, ax2).

A direct computation implies that I = a2 cosh2 x2(dx2
1 +dx2

2), so f is isother-
mal parametrization. Compute directly to see that fx1x1 + fx2x2 = (0, 0, 0),
so by Corollary 11.1.4 f is minimal.

Example 11.1.6. (Helicoid)
Let a > 0 be a constant, and

f(x1, x2) = (sinhx2 cosx1, sinhx2 sinx1, x1).

A direct computation implies that I = a2 cosh2 x2(dx2
1 + dx2

2) and fx1x1 +
fx2x2 = (0, 0, 0). So f is minimal. Note that Helicoid and Caternoid have
the same first fundamental form!
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Example 11.1.7. (Enneper’s surface)
Let

f(x1, x2) = (x1 −
x3

1

3
+ x1x

2
2, x2 −

x3
2

3
+ x2x

2
1, x

2
1 − x2

2).

Then I = (1 + x2
1 + x2

2)(dx2
1 + dx2

2) and 4f = (0, 0, 0). So f is minimal.

11.2. Linear conformal transformations of R2.

The plane R2 can be viewed as C by identifying
(
x
y

)
with the complex

number z = x + iy. Let α = a + ib be a fixed complex constant, and
Mα : C→ C the map defined by Mα(z) = αz, i.e.,

Mα(x+ iy) = (a+ ib)(x+ iy) = (ax− by) + i(bx+ ay).

If we use the identification of C with R2, then the map Mα becomes Tα :
R2 → R2, where

Tα

(
x
y

)
=
(
ax− by
bx+ ay

)
=
(
a −b
b a

)(
x
y

)
.

In other words, the map Mα given by multiplication by α on C is the map

Tα on R2, which is given by the multiplication by the matrix
(
a −b
b a

)
. We

can study the geometry of Tα using complex numbers: First write α = r0e
iθ0

in polar coordinate, i.e., r0 =
√
a2 + b2 and tan θ0 = b

a . If z = reiθ, then
Mα(z) = az = r0re

i(θ0+θ). In other words, the map Tα maps a vector v by
first rotating v counterclockwise by angle θ0, then multiplying the length by
the factor r0.

Let ] (v1, v2) denote the angle from v1 to v2. If vj = rje
iθj , then

] (v1, v2) = θ2 − θ1.

Exercise 11.2.1. Prove that if v1, v2 are orthonormal, then Tα(v1)·Tα(v2) =
0 and ||Tα(v1)|| = ||Tα(v2)||.

The linear operator Tα preserves angles and stretchs each vector by a
fixed amont r0. We call Tα a linear conformal transformation of R2.

Exercise 11.2.2. Suppose T : R2 → R2 is the linear map defined by

T

(
x
y

)
=
(
a c
b d

)(
x
y

)
.

Let e1 =
(

1
0

)
, and e2 =

(
0
1

)
. Prove that if ] (T (u), T (v)) = ] (u, v) and

||T (e1)|| = T (e2)||, then d = a and c = −b, i.e., T is a linear conformal
transformation.
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If |α| = 1, i.e., α = eiθ0 = cos θ0 + i sin θ0, then

Tα

(
x
y

)
=
(

cos θ0 − sin θ0

sin θ0 cos θ0

)(
x
y

)
=
(
x cos θ0 − y sin θ0

x sin θ0 + y cos θ0

)
is the rotation by angle θ0. We call(

cos θ0 − sin θ0

sin θ0 cos θ0

)
the rotation matrix by angle θ0.

11.3. Analytic functions, definitions and examples.

Definition 11.3.1. Let O be an open subset of C.
(1) A map f : O → C is analytic at z0 if

lim
h→0

f(z0 + h)− f(z0)
h

exists. We will use f ′(z0) to denote the limit. The limit f ′(z0) is
called the complex derivative of f at z0. Here the limit is taking for
complex number h→ 0, i.e., given any ε > 0, there exists δ > 0 such
that if h ∈ C and |h| < δ then |f(z0 + h)− f(z0)| < ε.

(2) The map f : O → C is analytic if f is analytic at every point z0 ∈ O.

Given a function f : O → C, we can write f(z) = u(x, y) + iv(x, y) with
real valued functions u, v. We will call u and v the real and imaginary part
of f , and write u = Re(f) and v = Im(f).

Example 11.3.2. Let f(z) = 2x+ iy = 3z+z̄
2 . It is easy to see that

f(r + is)− f(0)
r + is

=
2r + is

r + is
→

{
2, if s = 0, r → 0,
1, if r = 0, s→ 0.

So the limit of f(h)−f(0)
h does not exist, i.e., f is not analytic.

Example 11.3.3.
(1) Let f(z) = z. Then

f(z + h)− f(z)
h

=
(z + h)− z

h
= 1,

so f ′(z) = 1.
(2) Let f(z) = zn. Then

f(z + h)− f(z)
h

=
(z + h)n − zn

h

=
zn + nzn−1h+ n(n−1)

2 zn−1h2 + · · ·+ hn − zn

h

= nzn−1 +
n(n− 1)

2
zn−2h+ · · ·+ hn−1 → nzn−1 as h→ 0.
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So (zn)′ = nzn−1.
(3) Let f(z) = ez = ex+iy := exeiy = ex(cosx + i sinx). Then ez1+z2 =

ez1ez2 . Since the Taylor series of ex, cos y, and sin y converges abso-
lutely,

ez =
∞∑
n=0

zn

n
.

So

eh − 1
h

=
(1 + h+ h2

2 + · · · )− 1
h

= 1 +
h

2
+ · · · ,

which implies limh→0
eh−1
h = 1. But

ez+h − ez

h
=
ezeh − ez

h
=
ez(eh − 1)

h
,

hence its limit is ez as h→ 0. Thus (ez)′ = ez.

The addition formula, product formula, quotient formula, and the chain
rule for analytic functions can be proved in a similar way as for calculus of
one real variable.

We define

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Since ez is analytic, by the chain rule we have (eiz)′ = ieiz and (e−iz)′ =
−ie−iz.

Exercise 11.3.1. Prove that:
(1) (sin z)′ = cos z and (cos z)′ = − sin z.
(2) cos2 z + sin2 z = 1,

Define

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
.

Exercise 11.3.2. Prove that
(1) cosh2 z − sinh2 z = 1,
(2) (cosh z)′ = sinh z, (sinh z)′ = cosh z,
(3) cosh(iz) = cos z, sinh(iz) = i sin z.

Theorem 11.3.4. Suppose f : O → C is analytic, and α, β : (−δ, δ) → O
smooth curves intersect at p0 = α(0) = β(0). Then

] (α′(0), β′(0)) = ] ((f ◦ α)′(0), (f ◦ β)′(0)),

i.e., f preserves angles.

Proof. By the chain rule, (f◦α)′(0) = f ′(α(0))α′(0) = f ′(p0)α′(0). Similarly,
(f ◦β)′(0) = f ′(p0)β′(0). But ] (α′(0), β′(0)) = ] (f ′(p0)α′(0), f ′(p0)β′(0)).

�
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11.4. Cauchy-Rieman equation.

Let O be an open subset of R2, and k(x, y) = (u(x, y), v(x, y)) a smooth
map from O to R2. The degree 1 Taylor expansion of k at (x0, y0) is

k(x0, y0) + kx(x0, y0)x+ ky(x0, y0).

The map dk(x0,y0) : R2 → R2 defined by (x, y) 7→ kx(x0, y0)x+ ky(x0, y0)y is
linear, and is called the differential of k at (x0, y0).

We want to write down the matrix for the differential dk(x0,y0). Note that

dk(x0,y0)(x, y) = kx(x0, y0)x+ ky(x0, y0)y

= (ux(x0, y0), vx(x0, y0))x+ (uy(x0, y0), vy(x0, y0))y

= (ux(x0, y0)x+ uy(x0, y0)y, vx(x0, y0)x+ vy(x0, y0)y).

Write R2 as the space of coloumn vectors. Then dk(x0,y0) is

dk(x0,y0)

(
x
y

)
=
(
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

) (
x
y

)
.

In other words, the matrix of the linear map dk(x0,y0) with respect to the
standard basis is the Jacobi matrix(

ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

)
.

It is known from calculus that
||k(x+ x0, y + y0)− k(x0, y0)− dk(x0,y0)(x, y)||

||(x, y)||
→ 0. (11.4.1)

Theorem 11.4.1. Let k(x, y) =
(
u(x, y)
v(x, y)

)
be a smooth map, and f(z) =

u(x, y) + iv(x, y). Then the following conditions are equivalent:
(i) dk(x0,y0) is linear conformal,

(ii)

{
ux(x0, y0) = vy(x0, y0)
uy(x0, y0) = −vx(x0, y0),

(iii) f = u + iv is analytic at z0 = x0 + iy0, and f ′(z0) = ux(x0, y0) +
ivx(x0, y0).

Proof. A linear map T
(
x
y

)
=
(
a c
b d

)(
x
y

)
is linear conformal if d = a and

c = −b. So (i) and (ii) are equivalent. If dk(x0,y0) is linear conformal, then
when we identify R2 as C, the linear operator dk(x0,y0) on R2 becomes Mα,
where α = ux(x0, y0) + ivx(x0, y0). So (11.4.1) becomes

f(z0 + z)− f(z0)− αz
z

→ 0

as z → 0, i.e., f is analytic at z0 and f ′(z0) = ux(x0, y0) + ivx(x0, y0). �

As a consequence, we get
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Theorem 11.4.2. Suppose u, v : O → R are smooth. Then f(z) = u(x, y)+
iv(x, y) is analytic if and only if u, v satisfies the Cauchy-Rieman equation:

ux = vy, uy = −vx. (11.4.2)

Theorem 11.4.3. Suppose f : O → C is analytic, and f(z) = u(x, y) +
iv(x, y), where u, v are real valued functions. Then

(a) f ′(z) = fx = −ify,
(b) u, v satisfy the Cauchy-Rieman equation (11.4.2),
(c)

f ′(z) = ux + ivx = ux − iuy =
1
2

(
∂

∂x
− i ∂

∂y

)
f,

(d) u and v are harmonic functions, i.e.,

uxx + uyy = 0, vxx + vyy = 0.

Proof. We will give another proof of (b). The function f is analytic means
that

lim
h→0

f(z + h)− f(z)
h

= f ′(z).

Here h = r+is is a complex number and the limit is equal to f ′(z) whenever
h→ 0. If we choose h = r → 0, then the limit is fx = ux + ivx. If we choose
h = is→ 0, then
f(x+ iy + is)− f(x+ iy)

is
=
u(x, y + s) + iv(x, y + s)− u(x, y)− iv(x, y)

is

=
1
i

(
u(x, y + s)− u(x, y)

s
+ i

v(x, y + s)− v(x, y)
s

)
,

so as s→ 0, the limit is
1
i
(uy + ivy) = vy − iuy.

But the assumption is that no matter how the complex number h→ 0, the
limit is always the same, and is equal to f ′(z). This shows that

f ′(z) = ux + ivx = vy − iuy.
In other words, f ′(z) = fx = −ify, which proves (a). This also shows that
ux = vy and uy = −vx, which is (b).

Since
1
2

(
∂

∂x
− i ∂

∂y

)
f =

1
2

(fx − ify) = fx = −ify,

it is equal to f ′(z), which gives the last part of (c).
For (d), we use (b) to compute uxx + uyy = uxx − (vx)y = uxx − (vy)x =

uxx − (ux)x = 0. Similarly, vxx + vyy = 0. �

Part (c) of the above theorem explains the notation in complex variable:

∂

∂z
=

1
2

(
∂

∂x
− i ∂

∂y

)
.
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Corollary 11.4.4. If f : O → C is analytic, then f ′ is also analytic.

Proof. Suppose f = u + iv. Then ux = vy and uy = −vx. We know that
f ′ = ux+ivx. We claim that U = ux and V = vx satisfy the Cauchy-Rieman
euqation. To see this, we compute Ux = uxx, Vy = vxy = (vy)x = (ux)x =
uxx, so Ux = Vy. Also Uy = uxy and Vx = vxx = (−uy)x = −uxy, thus
Uy = −Vx. Hence U, V satisfy the Cauchy-Rieman equation. By Theorem
11.4.2, f ′ is analytic. �

11.5. Harmonic conjugate of a harmonic function.

Given a harmonic function u : O → R, is there a harmonic function
v : O → R such that f(z) = u(x, y) + iv(x, y) is an analytic function? We
know that such v must satisfy the Cauchy-Rieman equation{

vx = −uy,
vy = ux.

(11.5.1)

Since u is given, the right hand sides are given functions. By Frobenius
Theorem, the compatibility condition that the above system is solvable is
that (−uy)y = (ux)x, i.e., uxx + uyy = 0. Since u is harmonic, the compat-
ibility condition is satisfied, so we can solve v. In fact, such v are uniquely
determined up to a constant. Now let f(z) = u(x, y) + iv(x, y). Because
u, v satisfy the Cauchy-Rieman equation, f is analytic. We call such v a
harmonic conjugate of u.

Next we give more detail of construction of solution v of (11.5.1). Given
P (x, y) and Q(x, y), the following initial value problem has a unique v(x, y),

vx = P

vy = Q,

v(0, 0) = c0

(11.5.2)

if Py = Qx. The solution v can be constructed using integration. Fix y, the
first equation implies that v(x, y) = c0 +

∫ x
0 P (s, y) ds + g(y) for some g.

But

vy =
∂

∂y

∫ x

0
P (s, y) ds+ g′(y) =

∫ x

0

∂P

∂y
(s, y) dy + g′(y)

=
∫ x

0
Qx(s, y) dx+ g′(y) = Q(x, y)−Q(0, y) + g′(y),

which is equal to Q if −Q(0, y) + g′(y) = 0. So g′(y) = Q(0, y), hence
g(y) =

∫ y
0 Q(0, t) dt. In other words, we have proved:

Theorem 11.5.1. The solution for (11.5.2) is

v(x, y) = c0 +
∫ y

0
P (s, y) ds+

∫ y

0
Q(0, t) dt.

Theorem 11.5.2. If u is harmonic, then
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(i)

v(x, y) = c−
∫
uy(x, y) dx+

∫
ux(0, y) dy

is a harmonic conjugate of u,
(ii) f = u+ iv is an analytic function.

Proof. A harmonic conjugate of u must satisfy the Cauchy-Rieman equation{
vx = −uy,
vy = ux.

Part (i) follows from Theorem 11.5.1, and (ii) follows from Theorem 11.4.2.
�

Example 11.5.3.
Let u(x, y) = cosh y cosx. It is easy to check that u is harmonic. The
harmonic conjugates of u is obtained by solving{

vx = −uy = − sinh y cosx = P,

vy = ux = − cosh y sinx = Q.

So Q(0, y) = 0. By Theorem 11.5.2,

v(x, y) =
∫
− sinh y cosx dx+

∫
0dy = c− sinh y sinx

is a harmonic conjugate of u. Note that

u+ iv = cosh y cosx− i sinh y sinx+ ic,

which is equal to cosh(−iz) + ic because

cosh(−iz) = cosh(−i(x+ iy)) = cosh(y − ix) =
ey−ix + e−(y−ix)

2

=
ey(cosx− i sinx) + e−y(cosx+ i sinx)

2

=
ey + e−y

2
cosx− ie

y − e−y

2
sinx = cosh y cosx− i sinh y sinx.

Hence cosh y cosx is the real part of the analytic function cosh(−iz).

Exercise 11.5.1.

(1) Prove that u(x, y) = 1
2 ln(x2 + y2) is harmonic for x > 0, and find a

harmonic conjugate for u. (The analytic function obtained this way
is ln(z)).

(2) Prove that u(x, y) = x− x3

3 +xy2 is harmonic, and find the harmonic
conjugate v for u with v(0, 0) = 0.
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11.6. Weierstrass representations of minimal surfaces.

Proposition 11.6.1. Let f = (f1, f2, f3) : O → R3 be a parametrized
surface. Set

φj = (fj)x − i(fj)y, 1 ≤ j ≤ 3.
Then f is isothermal paramtrization if and only if φ2

1 + φ2
2 + φ2

3 = 0.

Proof. Note that

φ2
1 + φ2

2 + φ2
3 =

3∑
j=1

((fj)x − i(fj)y)2

=
3∑
j=1

(fj)2
x − (fj)2

y − 2i(fj)x(fj)y

= ||fx||2 − ||fy||2 − 2ifx · fy,
which is zero if and only if both the real part and imaginary part are zero,
i.e.,

||fx||2 − ||fy||2 = 0, fx · fy = 0,
which is equivalent to f(x, y) is isothermal parametrization. �

Proposition 11.6.2. Let f = (f1, f2, f3) : O → R3 be a surface parametrized
by isothermal parametrization, and φj = (fj)x − i(fj)y. Then f is minimal
if and only if φj is an analytic function for j = 1, 2, 3.

Proof. Since the parametrization is isothermal, by Corollary 11.1.4 f is min-
imal if and only if each fj is harmonic for 1 ≤ j ≤ 3. Let gj be a harmonic
conjugate of fj . Then Fj = fj + igj is an analytic function for 1 ≤ j ≤ 3.
By Theorem 11.4.3 (c), F ′j(z) = (fj)x− i(fj)y = φj . By Corollary 11.4.4, φj
is analytic. �

Given an analytic function g, let
∫
g dz denote an anti-derivative of g,

i.e., (
∫
g dz)′ = g.

Example 11.6.3.

(1)
∫
z dz = z2

2 + c,
(2)

∫
zn dz = zn+1

n+1 + c,
(3)

∫
ez dz = ez + c,

(4)
∫

sin z dz = − cos z + c.

Given a complex value function f = u+iv, we use the notation u = Re(f)
and v = Im(f).

Corollary 11.6.4. Suppose φj : O → C are analytic such that φ2
1+φ2

2+φ2
3 =

0 and |φ1|2 + |φ2|2 + |φ3|2 never vanishes on O. Set

Fj(z) =
∫
φj(z) dz, fj = Re(Fj).

Then f = Re(f1, f2, f3) is a minimal surface.
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Therefore given any two analytic functions φ1, φ2 from O to C, we may
choose φ3 =

√
1− φ2

1 − φ2
2 and let

F =
(∫

φ1(z)dz,
∫
φ2(z)dz,

∫
φ3(z)dz

)
, f = Re(F ).

If ||φ(z)|| is not zero for all z ∈ O, then f := Re(F ) : O → R3 is a minimal
surface.

Example 11.6.5. Let

φ1(z) = sinh z, φ2(z) = −i cosh z, φ3(z) = 1.

Then φ2
1 + φ2

2 + φ2
3 = sinh2 z − cosh2 z + 1 = 0, and

F (z) =
(∫

sinh z dz,
∫
−i cosh z dz,

∫
1 dz

)
= (cosh z,−i sinh z, z).

But

cosh z =
ez + e−z

2
= coshx cos y + i sinhx sin y,

sinh z =
ez − e−z

2
= sinhx cos y + i coshx sin y.

So the real part f(z) of F (z) is

f(z) = f(x, y) = (coshx cos y, coshx sin y, x),

which is a Catenoid. Note that ||
∑3

j=1 φj(z)||2|| is always positive. So f is
an immersion for (x, y) ∈ R2.

Exercise 11.6.1. Given φ = (φ1, φ2, φ3) with φj analytic for j = 1, 2, 3:
(a) φ(z) = (i sinh z, cosh z, i),
(b) φ(z) = (1− z2, i(1 + z2), 2z),
(c) φ(z) =

(
2

1+z2
, 2i

1−z2 ,
4z

1−z4

)
(d) φ(z) = (1− cosh(−iz), i sinh(−iz), 2 sinh(−iz/2)).

Then:
(1) Prove that

∑3
j=1 φ

2
j = 0,

(2) Compute F (z) =
∫
φ(z) dz =

(∫
φ1(z) dz,

∫
φ2(z) dz,

∫
φ3(z) dz

)
.

(3) Find the region of (x, y) such that ||φ(z)|| > 0, where z = x+ iy.
(4) Compute the real part of F (z) to get a minimal surface. (For (a)-

(d) the minimal surfaces are helicoid, Ennper, Scherk, and Catalan
surfaces respectively.

Theorem 11.6.6. Suppose φ1(z), φ2(z), φ3(z) are analytic functions and

φ1(z)2 + φ2(z)2 + φ3(z)2 = 0.

Let φ(z) = (φ1(z), φ2(z), φ3(z)), and F (z) =
∫
φ(z) dz = f(z) + ig(z). Let

0 ≤ θ ≤ 2π be a constant, and set

ψj(z) = eiθφj(z), ψ(z) = (ψ1(z), ψ2(z), ψ3(z)) = eiθφ(z)
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Then
(a)

∑3
j=1 ψj(z)

2 = 0,
(b)

∫
ψ(z) dz = eiθF (z) = (f cos θ − g sin θ) + i(f sin θ + g cos θ),

(c) fθ(x, y) = f(x, y) cos θ − g(x, y) sin θ is a minimal surface.

Proof. (a) Since ψj = eiθφj ,
3∑
j=1

ψj(z)2 = e2iθ
3∑
j=1

φ2
j = 0.

(b) Note
∫
ψ(z) dz =

∫
eiθφ(z) dz = eiθ

∫
φ(z) dz = eiθF (z).

(c) is a consequence of Corollary 11.6.4. �

The above Theorem can be used as follows: Given a minimal surface
f = (f1, f2, f3) in isothermal parametrization, let φ = fx − ify, and F =∫
φ(z) dz. Then the real part of F is f . Let g denote the imaginary part of

F . Theorem 11.6.6 says that f cos θ − g sin θ is also a minimal surface for
each constant 0 ≤ θ < 2π. So each minimal surface comes in a family, which
is called the associated family of f .

Exercise 11.6.2.
(1) Find the associated families of the minimal surfaces given in Example

11.6.5 and Exercise 11.6.1.
(2) Use MathLab to plot these minimal surfaces (for each family, plot

the surface fθ with θ = 0, π/6, π/4, π/3, π/2).

12. differential forms

Let f : O → R3 be a parametrized surface in R3. Given p0 ∈ O, (dx1)p0
and (dx2)p0 are linear functionals on the tangent plane Tfp0 defined by

(dxi)p0(fxj (p0)) = δij .

A smooth 1-form on the surface f is

θ = a1(x1, x2) dx1 + a2(x1, x2) dx2,

where a1, a2 : O → R are smooth functions. In particular, θ(fxi) = ai for
i = 1, 2.

Wedge product
Let θ1, θ2 be 1-forms. The wedge product θ1 ∧ θ2 is defined as follows:

(θ1 ∧ θ2)(v1, v2) =
1
2

(θ1(v1)θ2(v2)− θ1(v2)θ2(v1)).

Exercise 12.0.3. Suppose θ1, θ2 are 1-forms. Prove that
(1) θ1 ∧ θ2 is skew-symmetric, i.e., (θ1 ∧ θ2)(v2, v1) = −(θ1 ∧ θ2)(v1, v2).
(2) θ1 ∧ θ1 = 0,
(3) θ2 ∧ θ1 = −θ2 ∧ θ1,
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(4) if θi = aidx1 + bidx2 for i = 1, 2, then

θ1 ∧ θ2 = (a1b2 − a2b1) dx1 ∧ dx2.

A smooth 2-form is

τ = h(x1, x2)dx1 ∧ dx2

for some smooth function h : O → R.

Exterior differentiation
If φ : O → R is a smooth function, then the exterior differentiation of φ

is the 1-form defined by

dφ = φx1 dx1 + φx2 dx2.

The exterior differentiation of a smooth 1-form θ = a dx1 + b dx2 is defined
by

dθ = da ∧ dx1 + db ∧ dx2.

Exercise 12.0.4. Prove that if θ = a dx1 + b dx2, then

dθ = (−ax2 + bx1)dx1 ∧ dx2.

Proposition 12.0.7. If φ : O → R is a smooth function, then the exterior
differentiation of the 1-form dφ is zero, i.e., d(dφ) = 0.

Proof. Since the (φx1)x2 = (φx2)x1 ,

d(dφ) = d(φx1dx1 + φx2dx2) = (−(φx1)x2 + (φx1)x2) dx1 ∧ dx2 = 0.

�

Exercise 12.0.5. Suppose h, k : O → R are smooth functions. Prove that
d(hk) = (dh)k + h dk.

Exercise 12.0.6. Let h : O → R be a smooth function, and θ a smooth
1-form. Prove that

(1) d(hθ) = dh ∧ θ + h dθ,
(2) d(hθ) = d(θh) = (dθ)h− θ ∧ dh.

Suppose Ω is a domain in R2 with piecewise smooth boundary ∂Ω. The
2-form dx1 ∧ dx2 can be viewed as the counterclockwise orientation of Ω (so
dx2∧dx1 is the clockwise orientation of Ω). Suppose we choose the counter-
clockwise orientation for Ω, then this induces an orientation on the boundary
by requiring that from the outward normal of Ω to the orientation of the
boundary is counter-clockwise. We call such orientation on the boundary
∂Ω the induced orientation.

We recall the Green’s formula:

Green’s formula
If P,Q : Ω→ R are smooth functions, then∫

∂Ω
P (x1, x2) dx1 +Q(x1, x2) dx2 =

∫ ∫
Ω

(−Px2 +Qx1) dx1 ∧ dx2,
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where ∂Ω has the induced orientation.

Note that

d(P dx1 +Q dx2) = (−Px2 +Qx1) dx1 ∧ dx2,

so the Green’s formula can be rewritten as∫
∂Ω
θ =

∫ ∫
Ω
dθ, (12.0.1)

where θ is the 1-form θ = P dx1 +Q dx2. Here the line integral
∫
∂Ω P dx1 +

Q dx2 can be computed by choosing a parametrization t ∈ [0, c] 7→ (x1(t), x2(t))
that parametrized the boundary curve ∂Ω with the induced orientation.
Then∫

∂Ω
P dx1 +Q dx2 =

∫ c

0
P (x1(t), x2(t))x′1(t) +Q(x1(t), x2(t))x′2(t)dt.

Formula (12.0.1) holds for a domain in Rn if we replace the 1-form by an
n− 1 form, and is called the Stoke’s formula. We explain the 3-dimensional
case: Let D be a domain in R3. A smooth 1-form on D is

θ = a1 dx1 + a2 dx2 + a3 dx3

for some smooth functions a1, a2, a3 on D. Let θ1, θ2, θ3 be 1-forms on
D. The wedge product θ1 ∧ θ2 is defined as above, and the wedge product
θ1 ∧ θ2 ∧ θ3 is the 3-form defined by

θ1 ∧ θ2 ∧ θ3 =
1
3!

∑
s∈S3

sgn(s)θ1(vs(1))θ2(vs(2))θ3(vs(3)).

Here S3 denote the set of all permutations of {1, 2, 3}, i.e., the set of all
bijective maps from {1, 2, 3} to itself, and sgn(s) = (−1)m if s can be written
as product of m permutations of two letters. It follows from the definition
that (θ1 ∧ θ2 ∧ θ3)p is an alternating multi-linear functional on R3 for each
p ∈ D. A smooth 2-form can be written uniquely as

b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2,

and a smooth 3-form on D is

h(x1, x2, x3) dx1 ∧ dx2 ∧ dx3,

where h : D → R is some smooth function. The exterior differentiation is
defined similarly:

(1) For h : D → R,

dh = hx1dx1 + hx2dx2 + hx3dx3.

(2) For a 1-form θ = a1dx1 + a2dx2 + a3dx3, dθ is the 2-form defined by

dθ = da1 ∧ dx1 + da2 ∧ dx2 + da3 ∧ dx3.

(3) For a 2-form τ = b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2, dτ is the
3-form defined by

dτ = db1 ∧ dx2 ∧ dx3 + db2 ∧ dx3 ∧ dx1 + db3 ∧ dx1 ∧ dx2.
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Exercise 12.0.7. Let D be an open subset of R3.
(1) Suppose θ = a1dx1 + a2dx2 + a3dx3. Prove that

dθ = ((a2)x1 − (a1)x2) dx1 ∧ dx2 + ((a3)x2 − (a2)x3) dx2 ∧ dx3

+ ((a1)x3 − (a3)x1)dx3 ∧ dx1.

(2) Prove that if h : D → R is smooth then d(dh) = 0.

Exercise 12.0.8. Prove that
(1) dx2 ∧ dx3 ∧ dx1 = dx3 ∧ dx1 ∧ dx2 = dx1 ∧ dx2 ∧ dx3,
(2) if τ = b1dx2 ∧ dx3 + b2dx3 ∧ dx1 + b3dx1 ∧ dx2, then

dτ = ((b1)x1 + (b2)x2 + (b3)x3) dx1 ∧ dx2 ∧ dx3.

The divergence formula is∫ ∫ ∫
D

((b1)x1 + (b2)x2 + (b3)x3) dx1 ∧ dx2 ∧ dx3

=
∫ ∫

∂D
b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2,

which can be written as the Stoke’s Theorem:∫ ∫ ∫
D
dτ =

∫ ∫
∂D

τ,

where τ = b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2.

Rn-valued form 1-form
Let h = (h1, h2, h3) : O → R3 be a smooth map. We define

dh := (dh1, dh2, dh3).

Then dh is a R3-valued 1-form. In fact,

dh = hx1dx1 + hx2dx2.

Note that here hx1 , hx2 are R3-valued maps.

13. Cartan’s method of moving frame

Let f : O → R3 be a parametrized surface, and e1, e2, e3 a smooth or-
thonormal frame on the surface such that e3 = N is the unit normal vector
field of the surface. We can write (ei)x1 and (ei)x2 as linear combinations of
e1, e2, e3: {

(ei)x1 = e1p1i + e2p2i + e3p3i,

(ei)x2 = e1q1i + e2q2i + e3q3i,
.

where
pji = (ei)x1 · ej , qji = (ei)x2 · ej .
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If we use the differential form notation, then the above equation becomes

dei =
3∑
j=1

pjiej dx1 +
3∑
j=1

qjiejdx2

=
3∑
j=1

pjidx1ej +
3∑
j=1

qjidx2ej =
3∑
j=1

(pjidx1 + qjidx2)ej .

Set
wji = pjidx1 + qjidx2,

then we can rewrite dei as

dei =
3∑
j=1

wjiej , 1 ≤ i ≤ 3. (13.0.2)

Recall that the Gauss-Codazi equation for surface f is given by the con-
dition that (ei)x1x2 = (ei)x2x1 , which is also the condition that d(dei) = 0.
But

0 = d(dei) = d

 3∑
j=1

wjiej

 =
3∑
j=1

dwjiej − wji ∧ dej

=
3∑
j=1

dwjiej −
3∑
j=1

wji ∧
3∑

k=1

wkjek

=
3∑

k=1

dwkiek −
3∑

k=1

3∑
j=1

wji ∧ wkj ek

=
3∑

k=1

dwkiek +
3∑

k=1

3∑
j=1

wkj ∧ wjiek

=
3∑

k=1

dwki +
3∑
j=1

wkj ∧ wji

 ek,

so each coefficient of ek must be zero, i.e.,

dwki +
∑
j

wkj ∧ wji = 0. (13.0.3)

This is the condition that d(dei) = 0, which is the same as (ei)x1x2 = (ei)x2x1 ,
so the above equation is the Gauss-Codazzi equation. Take the dot product
of (13.0.2) with ej to get

wji = dei · ej .
But ei · ej = δij implies that dei · ej + ei · dej = 0, so

wij + wji = 0, wii = 0.
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Thus
3∑

k=1

w1k ∧ wk2 = w11 ∧ w12 + w12 ∧ w22 + w13 ∧ w32 = 0 + 0 + w13 ∧ w32.

Similarly, we get
∑3

k=1w2k ∧ wk3 = w21 ∧ w13, and
∑3

k=1w1k ∧ wk3 =
w12 ∧ w23. So the Gauss-Codazzi equation (13.0.3) becomes

dw12 = −w13 ∧ w32,

dw23 = −w21 ∧ w13,

dw13 = −w12 ∧ w23.

(13.0.4)

The first equation is the Gauss equation and the second and third are the
Codazzi equations.

Set

w1 = df · e1, w2 = df · e2.

Then we have

df = w1e1 + w2e2.

We claim that

I = w2
1 + w2

2,

II = −(w1 ⊗ w13 + w2 ⊗ w23).

To see this, we assume the surface f is parametrized by orthogonal coordi-
nates, and

A2
1 = fx1 · fx1 , A2

2 = fx2 · fx2 , `ij = fxixj · e3.

So

I = A2
1dx

2
1 +A2

2dx
2
2,

II = `11dx
2
1 + 2`12dx1dx2 + `22dx

2
2.

We choose

e1 =
fx1

A1
, e2 =

fx2

A2
, e3 = e1 × e2.

Then

w1 = df · e1 = (fx1dx1 + fx2dx2) · fx1

A1
=
fx1 · fx1dx1

A1
=
A2

1dx1

A1
= A1dx1.

Similarly,

w2 = A2dx2,

so

I = w2
1 + w2

2.
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Write

w13 = h11w1 + h21w2 = h11A1dx1 + h21A2dx2 =
2∑
j=1

hj1Ajdxj ,

w23 = h12w1 + h22w2 = h21A1dx1 + h22A2dx2 =
2∑
j=1

hj2Ajdxj .

Since wi3 = de3 · ei,
(e3)xi · e1 = w13(fxi) = hi1Ai,

Similar computation implies that

(e3)xi · e2 = hi2Ai.

But

(e3)xi · ej = Nxi ·
fxj

Aj
= − `ij

Aj
.

So hijAi = − `ij
Aj

, which implies that

`ij = −hijAiAj .
Since `12 = `21, h12 = h21. Next we compute

w1 ⊗ w13 + w2 ⊗ w23 = w1 ⊗ (h11w1 + h21w2) + w2 ⊗ (h12w1 + h22w2)

= h11w
2
1 + 2h12w1w2 + h22w

2
2 = h11A

2
1dx

2
1 + 2h12A1A2dx1dx2 + h22A

2
2dx

2
2

= −(`11dx
2
1 + 2`12dx1dx2 + `22dx

2
2) = −II.

This proves the claim. Recall that

K =
`11`22 − `212

g11g22 − g2
12

, H =
g22`11 − 2g12`12 + g11`22

g11g22 − g2
12

.

Since `ij = hijAiAj , we have

K = det(hij), H = h11 + h22.

The geometric meaning of the 2-form w13 ∧ w23

We compute

w13 ∧ w23 = (h11w1 + h12w2) ∧ (h12w1 + h22w2) = (h11h22 − h2
12)w1 ∧ w2.

But the Gaussian curvature is K = h11h22 − h2
12, so the first equation of

(13.0.4) (the Gauss-equation) gives

dw12 = −w13 ∧ w32 = w13 ∧ w23 = Kw1 ∧ w2,

i.e.,
dw12 = Kw1 ∧ w2. (13.0.5)

Note that K is a function on the surface and w1 ∧ w2 = A1A2 dx1 ∧ dx2 =√
det(gij) dx1 ∧ dx2 is the area element of the surface.
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Structure equations

We will show that w12 can be computed in terms of the first fundamental
form. Since

df = w1e1 + w2e2,

0 = d(df) = d(w1e1 + w2e2) = dw1e1 − w1 ∧ de1 + dw2e2 − w2 ∧ de2

= dw1e1 − w1 ∧ (w21e2 + w31e3) + dw2e2 − w2 ∧ (w12e1 + w32e3)

= (dw1 − w2 ∧ w12)e1 + (dw2 − w1 ∧ w21)e2 − (w1 ∧ w31 + w2 ∧ w32)e3

= (dw1 + w12 ∧ w2)e1 + (dw2 + w21 ∧ w1)e2 + (w1 ∧ w13 + w2 ∧ w23)e3.

Since e1, e2, e3 form a basis, the coefficients of ei in the above formula must
be zero. Use wi ∧wi = 0, w1 ∧w2 = −w2 ∧w1 to compute the coefficient of
e3 to get

w1 ∧ w13 + w2 ∧ w23 = w1 ∧ (h11w1 + h21w2) + w2 ∧ (h12w1 + h22w2)

= h21w1 ∧ w2 + h12w2 ∧ w1 = (h21 − h12)w1 ∧ w2,

which is zero, so we obtain h12 = h21. This gives another proof that the
shape operator is self-adjoint. The coefficients of e1, e2 are zero give the so
called structure equation of the surface:{

dw1 + w12 ∧ w2 = 0,
dw2 + w21 ∧ w1 = 0,

w21 = −w12. (13.0.6)

Exercise 13.0.9. Suppose w1 = A1dx1, w2 = A2dx2, and w12 = u dx1 +
v dx2. Use the structure equations (13.0.6) to prove that

u =
(A1)x2

A2
, v = −(A2)x1

A1
.

In other words, w12 can be solved from I.

We summarize the moving frame method: Let f : O → R3 be a parametrized
surface. We

(i) choose an orthonormal tangent moving frame e1, e2 on the surface,
(ii) set e3 = e1 × e2, wi = df · ei for i = 1, 2, and wij = dei · ej for

1 ≤ i, j ≤ 3.
Then wij satisfy the Gauss-Codazzi equation (13.0.4), and w1, w2, w12 satisfy
the structure equation (13.0.6).

Conversely, given I = E dx2
1 + 2F dx1dx2 + G dx2

2 and II = L dx2
1 +

2M dx1dx2 +N dx2
2 such that E > 0, EG− F 2 > 0

(1) write I as w2
1 +w2

2 by the method of completing squares to get w1, w2,
(2) construct w12 by solving the structure equation (13.0.6),
(3) w13, w23 can be obtained by writing II as −(w1w13 + w2w23), (this

can be done by writing −II as h11w
2
1 + 2h12w1w2 + h22w

2
2, then

w13 = h11w1 + h12w2 and w23 = h12w1 + h22w2),
(4) set wii = 0 for 1 ≤ i ≤ 3 and wji = −wij .
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The Fundamental Theorem of surfaces in R3 can be stated as follows: If wij
satisfies (13.0.3) (or equivalently (13.0.4)), then there exists a surface in R3

unique up to rigid motion with I, II as the fundamental forms.

Exercise 13.0.10. (1) Let I =
∑2

i,j=1 gijdxidxj be the first fundamen-
tal form of some surface. Prove that

g11dx
2
1 + 2g12dx1dx2 + g22dx

2
2

=
(
√
g11

(
dx1 +

g12

g11
dx2

))2

+

√g11g22 − g2
12

g11
dx2

2

,

(2) let w1 =
√
g11(dx1 + g12

g11
dx2) and w2 =

√
g11g22−g212

g11
dx2, prove that

w1 ∧ w2 =
√
g11g22 − g2

12 dx1 ∧ dx2,

which is the surface area element.

Exercise 13.0.11. Suppose

I = e2x2 dx2
1 + dx2

2, II = −ex2
√

1− e2x2 dx2
1 +

ex2

√
1− e2x2

dx2
2.

Find w1, w2, wij and prove that wij satisfy the Gauss-Codazzi equation
(13.0.4).

14. Geodesic curvature

Let α(s) = f(x1(s), x2(s)) be a smooth curve on the parametrized surface
f : O → R3, and s the arc length parameter of α, i.e., ||α′(s)|| = 1. Let
v1(s) = α′(s), v3(s) = N(α(s)), the unit normal of the surface at α(s),
and v2(s) = v3(s) × v1(s). Note that v2(s) is perpendicular to α′(s) and is
tangent to the surface at α(s). Since (v1, v2, v3) is orthonormal,

(v′1v
′
2, v
′
3) = (v1, v2, v3)

 0 −kg −kn
kg 0 τn
kn −τn 0


for some smooth function kg, kn and τn. In fact,

kg = v′1 · v2, kn = v′1 · v3, τn = v′3 · v2,

which are called the geodesic curvature, normal curvature, and normal tor-
sion respectively. Note that (v1, v2, v3) is not the Frenet frame of α.

Proposition 14.0.8. Suppose e1, e2 is an orthonormal tangent frame for
the surface f : O → R3, e3 = e1× e2, and wij = dej · ei for 1 ≤ i, j ≤ 3. Let
α(s) = f(x1(s), x2(s)) be a smooth curve on the surface parametrized by the
arc-length, and φ(s) the angle from e1(x1(s), x2(s)) to α′(s). Then

kg = −w12(α′(s)) + φ′(s). (14.0.7)
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Proof. Since the angle from e1(s) to α′(s) is φ(s),

v1(s) = cosφ(s)e1(s)+sinφ(s)e2(s), v2(s) = − sinφ(s)e1(s)+cosφ(s)e2(s).

But

kg = v′1 · v2 = (cosφ e1 + sinφ e2)′ · (− sinφ e1 + cosφ e2)

= (−φ′ sinφ e1 + φ′ cosφ e2 + cosφ e′1 + sinφ e′2) · (− sinφ e1 + cosφ e2)

= φ′ + cos2 φ e′1 · e2 − sin2 φ e′2 · e1

= φ′ − w12(α′(s)).

In the above computation we use the fact that e′i · ei = 0 and e′i · ej =
−ei · e′j . �

Proposition 14.0.9. Suppose α(s) = f(x1(s), x2(s)) is a smooth curve on
the parametrized surface f : O → R3, and α is parametrized by arc-length.
Then α is a geodesic if and only if kg = 0.

Proof. We had a result that if α is parametrized by arc-length, then α is a
geodesic if and only if α′′(s) is parallel to the normal vector of the surface
at α(s) (i.e., e3(x1(s), x2(s))). But v1 = α′, v3 = e3, v2 = v3 × v1,

v′1 = α′′ = kgv2 + knv3,

So α′′ is parallel to e3 if and only if kg = 0. �

Corollary 14.0.10. Suppose α(s) = f(x1(s), x2(s)) is a geodesic for f , and
α is parametrized by arc-length, e1, e2 is an orthonormal tangent frame, and
φ(s) is the angle from e1(s) to α′(s). Then φ′(s) = w12(α′(s)).

15. Theorem of turning tangents

A smooth curve α : [a, b] → R3 is a closed curve if α(a) = α(b) and
α(j)(a) = α(j)(b) for all j > 0, where α(j) = djα

dtj
. A smooth closed curve α

is simple if α is one to one.
Suppose the image of a simple closed curve α : [a, b] → R3 lies in an

open ball B in R3, and e1 : B → R3 is a smooth unit vector field. Given
v1, v2 ∈ R3, let ] (v1, v2) denote the angle from v1 to v2. Let

φ(s) = ] (e1(α(s)), α′(s)).

Intuitively, we see that
φ(b)− φ(a) = 2π,

which is the total turning of the tangents.
A continuous curve α : [0, c] → R3 is called a piecewise smooth k-gon if

there exists 0 = t1 < t1 < · · · < tk+1 = c such that
(1) the restriction of α to [ti, ti+1] is smooth, and let αi = α | [ti, ti+1]

denote the restriction of α to the interval [ti, ti+1] for 1 ≤ i ≤ k.
(2) α(c) = α(0),
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(3) ] (α′i(ti+1), α′i+1(ti+1)) 6= 0 or π for all 1 ≤ i ≤ k (here αk+1 = α1).
We call α(ti) a vertex of the piecewise smooth k-gon, αi | [ti, ti+1] an edge
of the k-gon. A piecewise smooth k-gon is a geodesic k-gon if each smooth
edge αi is a geodesic. The angle

θi+1 = ] (α′i(ti+1), α′i+1(ti+1))

is the exterior angle at the vertex α(ti), and

βi = π − θi
is the interior angle at α(ti). Set

φi(t) = ] (e1(α(t)), α′i(t)).

Then the total turning of the tangents along αi is φi(ti+1) − φi(ti). The
total turning of the tangents for the piecewise smooth k-gon is the sum of
the turning on every edge plus the jump at the vertex α(ti), so the total
turning of tangents is

k∑
i=1

(φi(ti+1)− φi(ti)) + θi.

The following is a theorem in topology:

Theorem 15.0.11. (Theorem of turning tangents)
k∑
i=1

(φi(ti+1)− φi(ti)) + θi = 2π.

16. Local Gauss-Bonnet formula

Let dσ denote the area element of the surface f : O → R3, i.e.,

dσ =
√
g11g22 − g2

12 dx1 ∧ dx2 = w1 ∧ w2.

The Gauss equation (13.0.5), dw12 = Kw1 ∧ w2, implies that∫ ∫
Ω
K dσ =

∫ ∫
Ω
Kw1 ∧ w2 =

∫ ∫
Ω
dw12.

By the Green’s formula (or the Stoke’s formula), we have∫ ∫
Ω
dw12 =

∫
∂Ω
w12,

so ∫ ∫
Ω
K w1 ∧ w2 =

∫
∂Ω
w12

Suppose4 is a geodesic triangle, i.e., ∂4 can be parametrized by a piecewise
smooth α : [0, c] → R3 with 0 = t1 < t2 < t3 < t4 = c such that αi =
α | [ti, ti+1] is a smooth geodesic for 1 ≤ i ≤ 3 and α(0) = α(c). Let
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θi = ] (α′i(ti+1), αi(ti+1)) denote the exterior anlge at the vertex α(ti), and
βi = π − θi the interior angle at α(ti).

Theorem 16.0.12.
(1)

∫ ∫
4K dσ = 2π − (θ1 + θ2 + θ3),

(2) β1 + β2 + β3 = π +
∫ ∫
4K dσ.

Proof. We have shown that
∫ ∫
4K dσ =

∫
∂4w12. But∫

∂4
w12 =

∫ c

0
w12(α′(t)) dt =

3∑
i=1

∫ ti+1

ti

w12(α′i(t) dt.

Since αi is a geodesic, by Corollary 14.0.10,

w12(α′) = φ′i,

where φi(t) = ] (α′i(ti), α
′
i(ti+1)). So∫ ∫

4
K dσ =

3∑
i=1

∫ ti+1

ti

φ′i(t) dt =
3∑
i=1

φi(ti+1)− φi(ti).

The Theorem of turning tangents implies that the above term is equal to
2π − (θ1 + θ2 + θ3), which proves the first formula. Since βi = π − θi, the
second formula follows. �

Corollary 16.0.13. The sum of interior angles of a geodesic triangle
(1) in the plane is 2π,
(2) in the unit sphere is 2π plus the area of the triangle,
(3) in a surface with K = −1 is 2π minus the area of the triangle.

17. Closed surface in R3

Given a smooth function u : O → R, the graph of u over the xy-, yz-,
and xz- plane are {(x, y, u(x, y) | (x, y) ∈ O}, {(u(y, z), y, z) | (y, z) ∈ O},
and {(x, u(x, z), z) | (x, z) ∈ O} respectively.

A subset M of R3 is called an embedded surface if given any point p ∈M
there exist an open subset U of R3 containing p, an open subset O of R2,
and a smooth function u : O → R such that U ∩M is the graph of u over
xy-plane, yz-plane, or xz-plane.

An emebedded surface M is closed if M is bounded.

Example 17.0.14. The unit sphere S2 is an embedded surface. For given
p = (p1, p2, p3) ∈ S2, we have p2

1 + p2
2 + p2

3 = 1, so not all p1, p2 p3 are zero.
If p1 < 0, then U = {(x, y, z) | x < 0, and U ∩ S2 is the graph of

u : {(x, y) | x2 + y2 < 1} → R, defined by u(x, y) = −
√

1− x2 − y2.

Given S ⊂ R3, a subset A of S is open in S if there exists an open subset
U of R3 such that A = S ∩ U .
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Example 17.0.15. Suppose f : O → R3 is a parametrized surface, f is 1−1,
and f(U) is open in f(O) if U is open in O. Then M = f(O) is an embedded
surface. For f is a parametrized surface, fx1 × fx2 6= 0. Let f = (f1, f2, f3).
fx1 × fx2(p0) 6= 0 implies that one of the following determinants at p0 is not
zero:

d1 =
∣∣∣∣(f1)x1 (f1)x2

(f2)x1 (f2)x2

∣∣∣∣ , d2 =
∣∣∣∣(f1)x1 (f1)x2

(f3)x1 (f3)x2

∣∣∣∣ , d3 =
∣∣∣∣(f2)x1 (f2)x2

(f3)x1 (f3)x2

∣∣∣∣ .
If d1(p0) 6= 0, then by the Inverse Function Theorem the map

(x1, x2) 7→ (y1, y2) = (f1(x1, x2), f2(x1, x2))

is a local diffeomorphism, i.e., locally there is an inverse (x1, x2) = g(y1, y2).
Then (y1, y2, f3(g(y1, y2)) is the graph over y1y2-plane. Similar argument
shows that if d2(p0) 6= 0, then near f(p0), f(O) is a graph over the y1y3-
plane; if d3(p0) 6= 0, then near f(p0), f(O) is a graph over y2y3-plane.

Given a smooth function φ : R3 → R and c ∈ R, the level set φ−1(c) =
{p ∈ R3 | φ(p) = c}. The gradient of φ at p is

∇φ(p) = (φx1(p), φx2(p), φx3(p)).

We call c ∈ R a regular value of φ if for all p ∈ φ−1(c), ∇φ(p) 6= 0.

Theorem 17.0.16. Suppose φ : R3 → R is smooth, and c is a regular value
of φ. Then φ−1(c) is an embedded surface.

Proof. Given p ∈ φ−1(c), since c is a regular value for φ, (φx1(p), φx2(p), φx3(p)) 6=
(0, 0.0). So one of the component must be non-zero, say φx3(p) 6= 0. Then
the Implicit Function Theorem says that near p, we can find a function u
such that φ(x1, x2, u(x1, x2)) = c, so near p, φ−1(c) is a graph. �

Exercise 17.0.12.
(1) Prove that {(x, y, z) | x2 + y2 − z2 = 1} is an embedded surface.
(2) Is {(x, y, z) | x2 + y2 − z2 = 0} an embedded surface?

18. Euler characteristic

Let 40 denote the triangle in R2 with vertices (0, 0), (1, 0), and (0, 1). A
triangle on an embedded surface M is the image of a one to one continuous
map h : 40 → M . Note that we do not require the restriction of h to the
boundary to be piecewise smooth, and h is only assumed to be continuous.

A triangulation on an embedded surfaceM in R3 is a collection of triangles
{4i | i ∈ I} satisfying the following conditions:

(1) ∪i∈I4i = M ,
(2) 4i ∩4j is either an empty set, a vertex, or an edge,
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By the definition of surfaces, we see that there are exactly two triangles
contains each edge of the triangulation.

It is a theorem in topology that every embedded closed surface has a
triangulation. Given a triangulation D = {4i | i ∈ I} on M , let
V = the number of vertices in D,
E = the number of edges in D,
F = the number of faces in D.

Another theorem in topology states that the number F − E + V is inde-
pendent of triangulations (for a proof of this theorem see []). The Euler
characteristic of M is

X (M) = F − E + V.

To give some reason to see whyX (M) is independent of choices of trian-
gulations, let us start with a triangluation D of a surface M . Suppose s
is a common edge of triangles 41,42 in D. We want to construct a new
triangluation on M that adds the mid point of s as a vertex. Then we must
joint the third vertices of 41 and 42 to this mid point in order to make it
a triangulation, which will be denoted by D′. Let F (D), E(D), V (D) denote
the number of faces, edges, and vertices in D, and similar notations for D′.
Note that D′ has one more vertex, two more faces, and three move edges
than D, so

F (D′)− E(D′) + V (D′) = F (D)− E(D) + V (D).

Let M1 and M2 be two embedded surfaces in R3. A map ψ : M1 →M2 is
continuous if the preimage of an open subset in M2 is an open subset in M1.
A continuous 1-1 and onto map ψ : M1 → M2 is called a homemorphism
if the inverse ψ−1 is also continuous. Note that if D = {4i | i ∈ I} is a
triangluation of M1 and ψ : M1 →M2 is a homeomorphism, then

ψ(D) = {ψ(4i) | i ∈ I}

is a triangulation of M2. Moreover, X (D) = X (ψ(D)), hence X (M1) =
X (M2). A property P of embedded surfaces is said to be invariant under
homeomorphism if M1 has property P then so is ψ(M) for any homeomor-
phism ψ. We call such property a topological invariant of surfaces. So the
Euler-characteristic is a topological invariant of surfaces.

Exercise 18.0.13. Let M be the unit sphere S2. We use three great circles
in the xy-, yz-, and xz-plane to cut S2 into 8 pieces. Each piece is a geodesic
triangle. It can be checked easily that these 8 triangles give a triangulation
for S2. Then F = 8, E = 12, and V = 6, so X (S2) = 2.

Exercise 18.0.14. Attaching a handle to a closed surface
Suppose D = {4i | i ∈ I} is a triangulation on M . Choose any two

disjoint triangles 41,42 in D. We attach a handle to M as follows:
(1) take out the interiors of 41,42 from M ,
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(2) attach a triangular cylinder without base and the top to M \ {41 ∪
42} by gluing the boundary of the top of the cylinder to ∂41 and
the boundary of the bottom of the cylinder to ∂42.

To compute the Euler characteristic of Σ1, we choose the triangulation E on
Σ1 as follows:

(1) use the same triangulation on M ,
(2) the cylinder part has three sides, each side is a rectangle, add one

diagonal to each rectangular side.
Then it is easy to see that

F (E) = F (D)− 2 + 6, E(E) = E(D) + 6, V (E) = V (D).

So X (Σ1) = X (M) − 2. If M = S2, then the resulting surface Σ1 is home-
morphic to a torus T 2 and hence the Euler characteristic of a torus is 0. In
general, if we attach g handles to S2, then the resulting surface Σg is a torus
with g holes and the above argument implies that

X (Mg) = 2− 2g.

19. Gauss-Bonnet Theorem

Theorem 19.0.17. (Gauss-Bonnet Theorem) If M is an embedded closed
surface in R3, then ∫ ∫

M
K dσ = 2πX (M).

Proof. We may choose a triangulation of M such that each triangle 4i is a
geodesic triangle. Since M is bounded, the triangulation has only finitely
many triangles, say m triangles, 41,42, . . . ,4m. Let θj(i) and βj(i) be the
exterior angle and interior angle of4i at the j-th vertex. Then θj(i)+βj(i) =
π. Note ∫ ∫

M
K dσ =

m∑
i=1

∫ ∫
4i

K dσ =
m∑
i=1

∫
∂4i

w12.

By Theorem 16.0.12, we have∫
∂4i

w12 = 2π − (θ1(i) + θ2(i) + θ3(i))

so ∫ ∫
M
K dσ = 2πm−

m∑
i=1

3∑
j=1

θj(i).

But exterior angle is computed on each edge of the triangle, and each edge
is contained in exactly two triangle, so

m,3∑
i=1,j=1

θj(i) = 2πE −
m,3∑

i=1,j=1

βj(i).
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In order to get the sum of all interior angles of all m triangles, we can add
the interior angles at each vertex, which is 2π, hence

m,3∑
i=1,j=1

βj(i) = 2πV.

We assume the triangulation has m triangles, so F = m and
∫ ∫

M K dσ is
equal to 2πF − (2πE − 2πV ), which is equal to 2πX (M). �

We call
∫ ∫

M K dσ the total curvature of M . It is clear that K depends
on the first fundamental form of M , so the total curvature is a geometric
invariant, but 2πX (M) is a topological invariant. One consequence of the
above theorem is that the total curvature is a topological invariant. For
example, if M is a closed surface in R3 with g holes, then

∫ ∫
M K dσ =

2π(2− 2g) = 4π(1− g) regardless of how M is embedded in R3.
The Gauss Bonnet Theorem is often viewed as the beginning of global dif-

ferential geometry and topology, and also the first indication of the relation
between curvature and characteristic classes, which plays an very important
role in modern mathematics and mathematical physics.


