About the Unduloid

What are the different shapes that a soap film can
take, or to put it somewhat differently, what can we
say about the differential geometry of a mathematical
surface that approximates a soap film?

An important physical characteristic of the soap film
is its surface tension 7. This depends only on the
chemical composition of the liquid from which it is
made, and so it is the same at each point of the film.
The difference in air pressure between the two sides
of the film is an environmental variable that is also
clearly the same at all points of the film. Now it fol-
lows from physical principles (that we will take for
granted here) that the mean curvature H of the soap
film at any point is equal to P/T, and so we see that
a soap film is always represented by a surface that has
constant mean curvature.

For a soap film that we get by dipping a closed loop of
wire into soapy water, the air pressure on both sides
is clearly the same, so such a soap film must have
mean curvature zero. Such surfaces are called minimal
surfaces, since it can be shown that if we draw any
small closed curve on the surface, the area of the part
of the surface inside the curve is less than or equal to
the area of any other surface bounded by the curve.



We consider minimal surfaces in considerable detail
elsewhere, and here we shall be interested in the case
of soap bubbles. These are soap films that (perhaps
together with some other surfaces) enclose a bounded
region of space (the “inside” of the bubble). For bub-
bles the pressure will be slightly greater on the inside
than on the outside, so that the surface is what is
called a CMC' surface, that is it has non-zero con-
stant mean curvature (and of course for the floating
type it is often just a sphere).

If one blows a soap bubble between two parallel glass
plates then one can obtain CMC surfaces that are sur-

faces of revolution, and such CMC surfaces are called
Unduloids.

Consider a curve in the z-y-plane, given parametri-
cally by x = z(t),y = y(t), or as a graph (z, f(x)) of
a function f. If one rotates this curve about the z-
axis, it is easy to compute an expression for the mean
curvature H of the resulting surface of revolution in
terms of the first and second derivative of x(t) and
y(t) (or, in the graph description, the derivatives of
f). If this expression is set equal to a positive con-
stant H, one gets differential equations for the func-
tions x(t) and y(t) (respectively for the function f),
and solving these ODE provides a method for finding



all CMC surfaces of revolution. Delaunay studied this
problem in 1841, and being an expert on the theory of
roulettes (i.e., a locus traced out by a point attached
to curve as that curve rolls on a line), he recognized
that the solutions of this differential equation could be
identified with the roulettes traced out by a focus of a
conic section as it rolls along the x-axis. The special
case that the conic is an ellipse gives the Unduloid. In
3D-XplorMath, the Unduloid is literally constructed
by this double process of first rolling an ellipse and
tracking one of its foci and then rotating the resulting
curve around the z-axis.

The default morph shows a family of unduloids that
starts with a cylinder and deforms towards a chain of
spheres. With the rolling construction of the Undu-
loid, we cannot reach the chain of spheres because the
parameter lines become concentrated near the narrow-
ing necks of the surfaces. However, if one resizes these
necks so they have constant waist size, then the necks
converge to (minimal) Catenoids. This fact was very
important in the construction of very general exam-
ples by Kapouleas.
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