
THE TODA LATTICE

Background

The Toda lattice is named after Morikazu Toda,
who discovered in the 1960’s that the differential equa-
tions for a lattice with internal force

T (y) = α(eβy − 1)

(with α, β constant) admit solutions which can be
written in terms of elliptic functions. This extends
the fact that the standard lattice with linear internal
force T (y) = ky can be solved using trigonometric
functions.

Since nonlinear o.d.e. are usually much more com-
plicated than linear o.d.e., the very fact that it admits
explicit solutions at all means that the Toda lattice
is already a remarkable example. (The Fermi-Pasta-
Ulam lattice, in contrast, has no analogous explicit
solutions.) A few years later, a possible explanation
of this property appeared, when it was discovered
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that the Toda lattice is an example of a “completely
integrable Hamiltonian system”. This, in turn, led to
an explanation of the unexpectedly simple behaviour
of the Fermi-Pasta-Ulam lattice (see the ATO for the
Fermi-Pasta-Ulam lattice): on the one hand, for a
completely integrable Hamiltonian system, (almost)
periodic behaviour can be predicted, and on the other
hand, the Fermi-Pasta-Ulam lattice can be regarded
as an approximation to the Toda lattice when the
vibrations are small. We shall say more about com-
pletely integrable Hamiltonian systems below.
How to view the demonstration

It can be seen that the Toda lattice behaves in
a very similar way to the Fermi-Pasta-Ulam lattice.
Instead of thermalizing, the lattice motion appears to
be periodic.
Further aspects

Mathematically, however, the Toda lattice is much
easier to analyse than the Fermi-Pasta-Ulam lattice,
because it is a completely integrable Hamiltonian sys-
tem. This means, practically speaking, that it has
the maximum possible number of conserved quanti-
ties. For a system of n ordinary differential equations
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of second order, this maximum number is n. For ex-
ample, for the equation y′′ = −ky, the total energy
1
2y′

2 + 1
2ky2 (kinetic energy plus potential energy)

is a conserved quantity, i.e. it is constant when y
is a solution of the differential equation, and there
are no others. The standard linear lattice is of this
type; each of the normal mode energies is a conserved
quantity, because each represents the total energy of
an “uncoupled” (independent) oscillator.

The fact that the Toda lattice has the maximum
possible number of conserved quantities is not obvi-
ous, and certainly not on physical grounds. A math-
ematical explanation comes from the fact that the
equations of motion may be written in the form L′ =
[L,M ], where L and M are matrix functions. This
type of equation is called a Lax equation (after Peter
Lax), and the Lax equation for the Toda lattice was
discovered by Hermann Flaschka in the 1970’s. For
any Lax equation, the eigenvalues of the matrix func-
tion L turn out to be conserved quantities, and this
gives the required number of conserved quantities of
the Toda lattice (though their physical meaning re-
mains unclear).

The conserved quantities greatly constrain the mo-
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tion of the system. In fact, the Arnold-Liouville The-
orem says that the motion of an n-dimensional com-
pletely integrable Hamiltonian system must, if it is
bounded (as in our case), be equivalent to linear mo-
tion on an n-dimensional torus. When n = 1 this
means that the motion must be periodic. When n = 2
(and similarly if n > 2) the motion must be express-
able as (e2π

√
−1 at, e2π

√
−1 at) for some real numbers

a, b; if a/b is rational the motion is periodic, otherwise
it is almost periodic in the sense that it winds densely
around the torus, returning arbitrarily closely to its
initial value.

Although the Fermi-Pasta-Ulam lattice and the
Toda lattice are approximately the same when the
vibrations are small, it can be shown that the Fermi-
Pasta-Ulam lattice is not a completely integrable
Hamiltonian system. Nevertheless, the almost peri-
odic motion of the Toda lattice is inherited by the
Fermi-Pasta-Ulam lattice, at least for small vibra-
tions, and this explains the absence of thermalization
in both cases.

Completely integrable Hamiltonian systems are im-
portant, but quite special. It is an important area of
current research to identify and study more general
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types of “integrable systems”.
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