About Spherical Ellipses
See ATO for Planar Ellipses

In 3ADXPLORMATH the Default Morph shows a family
of ellipses with fixed focal points F}, F5 as the larger
axis aa varies from its allowed minimum e = bb/2
to its allowed maximum m — e = 7w — bb/2. Another
interesting morph is 0.11 < aa < 1.43, 0.2 < bb <
m—0.2: the distance of the focal points increases until
they are almost antipodal and the major axis is only
slightly longer than the distance of the focal points.

ELEMENTARY DEFINITION. Many elementary con-
structions from planar Euclidean geometry have nat-
ural analogues on the twodimensional sphere S?. For
example, we can take the definition of planar ellipses
and use it on the sphere as follows: Pick two points
F1, Fy € S? of spherical distance 2e := dist(Fy, Fy) <
7 and define the set of points P € S? for which the
sum of the distances to the two points Fy, F5 equals
a constant =: 2a, i.e. the set:

(P e S?; dist(P, Fy) + dist(P, F5) = 2a},
to be a SPHERICAL ELLIPSE.



In the Euclidean plane there is only one restriction
between the parameters of an ellipse: 2e < 2a. Since
distances on S? cannot be larger than m we have two
restrictions in spherical geometry: 2e < 2a < 27— 2e.

For fixed focal points, i.e. for fixed e, these curves
cover the sphere (we allow that the smallest and the
largest ellipse degenerate to great circle segments).
One observes that the ellipse with 2a = 7 is a great
circle and that ellipses with 2a > 7 are congruent to

ellipses with 2a < 7 and focal points —F;, —F5.
This is because dist(P, F') = m—dist(P, —F') implies

m < 2a = dist(P, Fy) + dist(P, F) =
diSt(P, —Fl) + dZSt(P, —FQ) = 27 — 2a < .

Similarly, on the sphere one does not need to distin-
guish between ellipses and hyperbolas:

(P €§?% dist(P,Fy) + dist(P, ;) = 2a} =
(P e S? dist(P,F,) — dist(P,—F,) = 2a — 7}.

PRACTICAL APPLICATION. These curves are used
since more than 50 years in the LORAN System to
determine the position of a ship on the ocean as fol-
lows. Consider a pair of radio stations which broad-
cast synchronized signals. If one measures at any



point P on the earth the time difference with which
a pair of signals from the two stations arrives, then
one knows the difference of the two distances from
P to the radio stations. Therefore sea charts were
prepared which show the curves of constant differ-
ence of the distances to the two radio stations. This
has to be done for several pairs of radio stations. In
araes of the ocean where the families of curves (for
at least two pairs of radio stations) intersect reason-
ably transversal it is sufficient to measure two time
differences, then a look on the sea chart will show the
ship’s position as the intersection point of two curves,
two sperical hyperbolas. On the site
http://webhome.idirect.com/...

~ jproc/hyperbolic/index.html or

~ jproc/hyperbolic/lorc_hyperbola.jpg
this is explained by the following map:
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LOP - The locus of all positicns
where the observed time difference
between the arrival of signals from

two stations are constant.

Observer
(Hyperbolic Fix)

The LOP forms a hyperbola which
gives rise to the designation of
Loran-C as a hyperbolic
radionavigation system.




ELEMENTARY CONSTRUCTION, 3DXM-DEMO

Begin by drawing a circle of radius 2a around F;
(called Leitkreis in German). Next, for every point
C' on this circle we find a point X on the spherical
ellipse as follows:

Let M be the midpoint of the great circle segment
from C' to F5 and let 1" be the great circle through M
and perpendicular to that segment. In other words,
T is the symmetry line between C' and F5. Finally
we intersect T with the Leitkreis radius from Fj to C
in X. — Because we used the symmetry line 7" we

have dist(X, C) = dist(X, F) and therefore:

dist(X, F1) + dist(X, Fy) = dist(X, Fy) + dist(X,C)
= dist(C, F1) = 2a.

It is easy to prove that the great circle T is tangent
to the ellipse at the pointX.

CONNECTION WITH ELLIPTIC FUNCTIONS

We met a family of ellipses all having the same focal
points ('confocal’) and also the orthogonal family of
confocal hyperbolas in the visualization of the com-
plex function z — z 4+ 1/z. In the same way two or-
thogonal families of confocal spherical ellipses show



up in the visualization of elliptic functions from rect-
angular tori to the Riemann sphere (choose in the
Action Menu: Show Image on Riemann Sphere and
in the View Menu: Anaglyph Stereo Vision). — Note
that in the plane all such families of confocal ellipses
and hyperbolas are essentially the same, they differ
only in scale. On the sphere we get different fam-
ilies for different rectangular tori, i.e. for different
quadrupels of focal points {Fy, Fo, —F}, —F5}.

AN EQUATION FOR THE SPHERICAL ELLIPSE

Abbreviate a := dist(X, F1), B := dist(X, F). The
definition of a spherical ellipse says:

cos(2a) = cos(a + ) = cos acos 3 — sin asin (.
with cosa = (X, F1), cos 3 = (X, Fb).

We want to write the equation in terms of the scalar
products which are linear in X. Therefore we replace
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sin® = 1 — cos? to get:

(1 — cos® a)(1 — cos?® B) = (cos arcos B — cos(2a))?

or

2

1 — cos?® o — cos® B = —2 cos(2a) cos a cos B + cos?(2a)

or, by replacing the cosines by the scalar products:
sin®(2a)(X, X) — (X, F1)? — (X, Fy)? =
—2cos(2a) - (X, F1) - (X, Fy).

Observe that this is a homogenous quadratic equation
in X = (z,y, z). In other words: Our spherical ellipse
is the intersection of the unit sphere with a quadratic
cone whose vertex is at the midpoint of the sphere. So
we get the surprisingly simple result: If one projects a
spherical ellipse from the midpoint of the sphere onto
some plane then one obtains a (planar) conic section.

H.K.



