
Ordinary Differential Equations*

3D-Filmstrip knows how to calculate and display solutions
of the initial value problem for first and second order sys-
tems of ordinary differential equations (ODE) in one, two,
or three dependent variables.
Let us recall briefly what this means. We will be dealing
with vector-valued functions x of a single real variable t
called the “time”. Here x can take values in R, R2, or
R3. The problem is to find x from a knowledge of how x0

depends on x and t (in the first order case) or a knowledge
of how x00 depends on x, x0, and t (in the second order
case). Thus in the first order case the ODE we are trying
to solve has the form x0 = f(x, t) and in the second order
case it is x00 = f(x, x0, t).
In the first order case, the so-called Local Existence Theo-
rem for First Order ODEs tells us that, provided the func-
tion f is continuously differentiable, given an “initial time”
t0, and an “initial position” x0, then in some sufficiently
small interval around t0, there will be a unique solution
x(t) to the ODE with x(t0) = x0.
There is a similar local existence theorem for second order
ODEs (which in fact is an easy consequence of the first
order theorem). It says that given an initial time t0, an
initial position x0, and an initial velocity v0 then, in some

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

1



sufficiently small interval around t0, there will be a unique
solution x(t) of the ODE with x(t0) = x0 and x0(t0) = v0.
Theory provides not only an abstract existence theorem,
but also many explicit numerical algorithms for finding ap-
proximating solutions, in terms of the function f and the
initial data. One of the all-time favorites for general pur-
poses is the so-called Fourth Order Runge-Kutta Method,
and this is the one that 3D-Filmstrip uses.
Although the overall approach to solving such ODEs is
quite similar for first and second order ODEs and for the
various dimensions, the details for giving initial conditions
and for displaying solutions are different for each case, and
for that reason instead of having a single ODE category,
it turns out to be convenient to have six. The naming
of these categories is fairly self-evident. For example, the
ODE(1D) 1stOrder Category deals with the case that x
take values in R, and the equation is first order, while the
ODE(3D) 2ndOrder Category deals with the case that x
take values in R3, and the equation is second order.
For the ODE(1D) 2ndOrder category, the usual reduction
to a first order system in two variables (x, u), where u
represents x0, is made via (x, u)0 = (u, f(x, u, t)).
In the case of the ODE(2D) 1stOrder category, the orbit is
drawn dotted, with a constant time interval between dots.
This gives a valuable visual clue concerning the velocity at
which the orbit is traced out, but if you wish to turn this
feature off, just set Dot Spacing to zero using the ODE

2



Settings... dialog (see below).
In all the ODE categories, when you have chosen either a
particular pre-programmed example (or set up your own,
using the User Defined. . . feature) then as with the other
categories you will first see a visualization of a default solu-
tion. This display will usually stop quickly on its own, but
you can also click the mouse button (or type Command
period) to stop it. You may then choose the item “ODE
Settings. . .” in the Settings menu and this will allow you
to set the various data the program needs to compute and
display an orbit, namely:
a) the initial time,
b) the time-span,
c) the step-size (used in the Runge-Kutta method),
d) the initial value of x, and (in a second order case)
e) the initial value of x0.

Choosing Create from the Action Menu will then display
the solution for these newly selected settings.
There is an ODE control panel that opens by default just
below the main display window. This has buttons to do
more easily things you can also do with the menus (Create,
Erase, Continue, double or half the scale, and bring up
the dialog to set initial conditions, step-size, time-span,
and dottedness). In addition there are buttons for single-
stepping the ODE forward or backward, and there is a
read-out of the current time, position, and velocity. This

3



control panel can be hidden using the Hide ODE Controls
command of the Action menu (and then may be re-opened
with the Show ODE Controls command).
The main display shows the evolution of an orbit in the
phase space. By default, the program also shows projec-
tions of the orbit on the coordinate axes (using different
colors to distinguish the projections). This display occurs
in a second pane of the graphics window that opens au-
tomatically below the main pane. This pane can be hid-
den by choosing ”Hide Direction Fields” from the Action
menu. There is a rectangular button at the right edge of
the screen where the two panes meet. If you press on this
button, the button itself will disappear and be replaced by
a horizontal line. Drag the horizontal line to where you
would like the new boundary between panes and release
the mouse. (At least twenty percent of the total screen
height must be devoted to each pane.)
For first order ODE in one and two dimensions, the pro-
gram by default displays the direction field defined by the
current ODE. (Since second order ODEs in one variable
are reduced to first order ODEs in two variables, the di-
rection field is also shown in this case.) The direction field
of a time dependent ODE is updated every few integra-
tion steps. (As far as I know, 3D-Filmstrip is the only
publicly available program that shows direction fields for
time-dependent ODE.) For the ODE(3D) 2ndOrder cate-
gory there is also a direction field shown (when the display
is in stereo) for the special case of a charged particle in a

4



magnetic field—but be careful, the field shown is the mag-
netic field, not the direction of the Lorentz force acting on
the particle.
It is fairly easy to do a rough “phase space analysis” by
keeping the other data fixed and varying the initial values.
To make this easier, in certain categories it is possible to
choose the initial conditions using the mouse. For example,
in the ODE(1D) 1stOrder category, each time you click the
mouse in the window, the forward and backward orbits are
drawn through that initial value. Similarly, clicking the
mouse in the ODE(1D) 2ndOrder category and ODE(2D)
1st Order category also creates an orbit with the mouse
point as initial condition. Surprisingly, something similar
even works for the ODE(2D) 2ndOrder category. Here to
choose an initial condition AND velocity, either select IC
By Mouse [Drag] from the Action menu or type Control
I. You may then click and drag the mouse to choose the
initial position (click) and velocity (drag).

Numerical Methods for 1st Order ODEs
Numerical solutions are computed at a discrete set of time
points t0, t1, . . . , tn and usually one such time step of a
method is described, i.e. how to get from x(t0) to x(t1).
One then has to repeat this step as long as one wants to.
The simplest of all methods is the Euler method: From
the initial data t0, x0 = x(t0) one computes first the
initial derivative: x0(t0) := f(x0, t0), then the
Euler step: x(t1) := x0 + x0(t0) · (t1 − t0).

5



The following picture shows five such (large) Euler steps
and the corresponding exact solutions for the same time
interval. Clearly, if the exact solution curves happen to
be convex, the Euler Step solutions stay outside and move
farther away from the exact solution with each step.

Five Euler Steps

Recall that the tangent of a parabola wich is parallel to
some secant touches the parabola in the middle of the se-
cant interval. This suggests a substantial improvement
over the Euler method, it is called the Halfstep Method:
Stepsize: ∆t := t1 − t0
Initial Derivative: x0

0 := f(x0, t0)
Half Step towards Middle: xm := x0 + x0

0 · ∆t/2
Middle Derivative: x0

m := f(xm, t0 + ∆t/2)
Final Step: x(t1) := x0 + x0

m · ∆t.
Again we illustrate this method with a picture, but us-
ing a larger stepsize than in the Euler case. The magenta

6



vector is the derivative at the approximate midpoint xm

multiplied by the stepsize, i.e. x0
m · ∆t. This vector is the

difference between x(t1) and x(t0). One can see that this
method follows the solution curve rather well, but traverses
it too fast.

Three Halfstep Steps

Some first order ODEs have the property that the second
initial derivative can be computed rather easily, more eas-
ily than differentiation of the ODE, x00 = @

@xf · x0 + @
@tf ,

suggests. In those cases one can use a second order Taylor
step instead of the first order step used in Euler’s method.

7



We call this the Taylor-2 Method:

Initial 1st and 2nd Derivative: x0
0, x00

0

Taylor Step: x(t1) := x0 + x0
0 · ∆t + x00

0 · (∆t)2/2.
The endpoints of the magenta segments lie on the quadratic
parabola p(s) := x0 + x0

0 · s + x00
0 · s2/2, s ∈ [0,∆t] (with

the same initial tangent (green) as the exact solution). The
method has the same order of precision as the previous one,
so that one will often prefer the Halfstep method. But
in the vicinity of a point where f(x, t) = 0, the Taylor-2
method is usually better.

Three Taylor-2 Steps

Next we try to explain the famous Runge-Kutta Method.

First we need to understand what numerical analysts call

8



an order k method. If we compute one Euler step from x0,
but with various stepsizes s, then all the computed points
lie on the tangent x0 + x0

0 · s. The difference to the exact
solution is controlled by a bound B2 on the second deriva-
tive of solutions near x0 as: error(s) ≤ B2 · s2. This is
called a first order method.
For the Taylor-2 method these stepsize dependent numeri-
cal values lie on a parabola which was already mentioned:
p(s) := x0 + x0

0 · s + x00
0 · s2/2. The difference to the exact

solution x(s) is controlled in terms of a bound B3 for third
derivatives as: error(s) ≤ B3 · s3. This is called a second
order method.
How can one make such considerations work for the Half-
step method? Clearly the approximate midpoint is a func-
tion of the stepsize: xm(s) = x0+x0

0 ·s/2 and therefore the
final point also: xf (s) := x0 + f

°
xm(s), t0 + s/2

¢
· s. We

may call this curve the method-curve. Computation shows
that the exact solution at t0 and the method-curve at s = 0
have the same first and second derivative: x0

0(t0) = x0
f (0),

x00
0(t0) = x00

f (0). The error, therefore, is again ≤ B3 · s3,
and the method is also called a second order method.
What we saw in these examples is true in general: Con-
sider the initial data x0, t0 as fixed. The numerical value of
the computation of one step will then only depend on the
stepsize s, giving us the method-curve xf (s) for the consid-
ered numerical solution. If the first k initial derivatives of
the exact solution agree with the first k initial derivatives
of the method-curve, then we speak of an order k method.

9



The Runge-Kutta Method can be seen as a generaliza-
tion of the halfstep method: Instead of computing two
derivatives x0

0, x
0
m, Runge-Kutta computes four and aver-

ages them for the final step.
initial derivative: x0

0 := f(x0, t0)
1st intermediate point: xa(s) := x0 + x0

0 · s/2
1st intermediate derivative: x0

a(s) := f(xa(s), t0+s/2)
2nd intermediate point: xb(s) := x0 + x0

a · s/2
2nd intermediate derivative: x0

b(s) := f(xb(s), t0+s/2)
3rd intermediate point: xc(s) := x0 + x0

b · s
3rd intermediate derivative: x0

c(s) := f(xc(s), t0 + s)
derivative average: x0

RK(s) := (x0
0 + 2x0

a + 2x0
b + x0

c)/6
final step: xf (s) := x0 + x0

RK(s) · s.
We can compute the first four derivatives of this method-
curve and check that the above defines a 4th order method.
It is one of the most celebrated ODE solving numerical
methods. A visualisation of one Runge-Kutta step is:

10



The three straight segments from the initial point end at
the three intermediate points xa, xb, xc. Note how far they
are apart from each other compared to the small error of
the composite step. (The dotted green curve is the exact
solution, the black dots lie on the method-curve.)

In 3D-XplorMath ODEs are not only objects of visualisa-
tions, they are an essential tool for many computations in
the program. The ODE for elliptic functions f , namely:

f 0(z)2 = P (f(z)), P a polynomial of degree 3 or 4

is an example where the second derivative can be more
easily computed than the first: f 00(z) = P 0(f(z))/2. We
therefore use a different 4th order method:
Initial Derivatives: x0

0, x
00
0

Intermediate Point: xm(s) := x0 + x0
0 · s/2 + x00

0 · s2/8
Intermediate 2nd Derivative: x00

m(s) := P 0(xm(s))/2
Final Step: xf (s) := x0 + x0

0 · s + (x00
0 + 2x00

m(s)) · s2/6
Although zeros of the polynomial P are constant solutions
of the first order ODE, the just described method can start
to compute the non-constant function f at points z where
f 0(z) = 0 as initial value. A Runge-Kutta solution would
stay constant.

R.S.P., H.K.

11


