
Fractals & Chaos

The mathematical ideas that are encapsulated in the
terms “Fractal” and “Chaos” are not easy to make
precise in non-technical terms. Yet somehow these
terms have become “buzz words” that have caused
an unprecedented stir in the popular culture. Usu-
ally bookstores have very few mathematics books di-
rected at the layman, but the past decade has seen
an explosion of popular books with the stated goals
of explaining the theory and applications of fractals
and chaos to the non-mathematician.
These concepts have also proved exciting for profes-
sional mathematicians. The beginnings of both theo-
ries can be traced back at least a century, but in ret-
rospect it is clear that each required the visualization
capabilities that modern computers have provided in
order to progress beyond a fairly primitive stage. In
fact both areas were dormant for many years prior
to the 1970s when the ability to model fractals and
chaotic systems on computers provided some striking
examples that gave the necessary impetus for impor-
tant progress.
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We will not try here to give precise definitions of what
it means to say that a geometric object is a fractal
or that a dynamical system is chaotic. Rather, we
will try to explain these concepts in intuitive terms
that are directly related to the visualizations that 3D-
XplorMath provides.
The first property is a geometric one that applies to
subsets of the plane or higher dimensional spaces and
goes by the name of scaling invariance. What this
means is that there are arbitrarily small pieces of the
set that when “scaled-up” (i.e., seen under a high
power microscope) look very similar to much larger
pieces of the set. Such sets are called fractals, because
in a certain precise sense they have a dimension which
is a non-integer value.

Chaos on the other hand describes a character-
istic behavior of certain dynamical processes that is
usually referred to as “sensitive dependence on initial
conditions”. For simplicity we will restrict our atten-
tion here to fairly special dynamical systems, namely
discrete dynamical systems in the complex plane de-
fined by a polynomial function, f(z), of degree d
greater than one. (In fact, the case of a quadratic
polynomial already exhibits most of the interesting
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behavior.) Let us denote by f◦n the polynomial ob-
tained by composing f with itself n times. Roughly
speaking, “complex dynamics” is concerned with the
study of the asymptotic properties of the sequences
of iterates f◦n(z) as n teds to infinity, and how this
asymptotic behavior changes as the initial condition,
z, varies.

We define B∞(f) to be the so-called attractor
basin of infinity, namely the set of all initial condi-
tions z for which the sequence f◦n(z) tends to infinity.
It is easy to see that B∞(f) is an open set. More-
over, from d ≥ 2 it follows that there is some disk,
say of radius R, and a constant K > 1 such that
|f(z)| > K|z| for all initial conditions z with |z| > R,
and it follows that the complement of the disk of ra-
dius R is included in B∞(f), so in particular B∞(f)
is non-empty. On the other hand B∞ cannot be the
whole complex plane. For example, any solution of
the polynomial equation f(z)− z = 0 is a fixed point
of f so that f◦n(z) = z for all n, and so z is not in
B∞. It follows that the boundary ∂B∞ of the basin
of infinity is a non-empty compact set, J(f) called
the Julia set of f .
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Note that by definition J(f) is a “bifurcation set” for
f , in the sense that given any point j of J(f) there are
points p and q arbitrarily close to j such that f◦n(p)
tends to infinity while f◦n(q) remains bounded. In
other words, for z near j, the asymptotic behavior of
the sequence f◦n(z) depends sensitively on the initial
value z, the hallmark of Chaos.
Example. If f(z) = z2, show that B∞(f) is the
complement of the unit disk, so that J(f) is the unit
circle.
It turns out that this example is highly atypical—in
general J(f) is not a smooth curve, and in fact it is
usually a fractal set, establishing a relation between
fractals and chaos. For more details see the ATO for
the Mandelbrot set and Julia sets.
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