On Curves Given By Their Support Function

This note is about smooth, closed, convex curves in the plane and how to define them in terms of their so-called *Minkowski support function* h. For quick reference we first show how, in 3D-XplorMath, h can be modified by specifying parameters. Then we begin with a more general class of geometric objects, namely *convex bodies*.

1. Parameter Dependent Formulas

In 3D-XplorMath, the support function h is given in terms of Fourier summands:

$$\begin{split} h(\varphi) &:= aa + bb\cos(\varphi) + cc\cos(2\varphi) + \\ dd\cos(3\varphi) + ee\cos(4\varphi) + ff\cos(5\varphi). \end{split}$$

In terms of this function we define the following curve:

$$c(\varphi) := h(\varphi) \cdot \left(\frac{\cos(\varphi)}{\sin(\varphi)} \right) + h'(\varphi) \cdot \left(\frac{-\sin(\varphi)}{+\cos(\varphi)} \right).$$

Differentiation shows that c is given in terms of its unit normal and tangent vectors and the function h:

$$c'(\varphi) = (h + h'')(\varphi) \cdot \begin{pmatrix} -\sin(\varphi) \\ +\cos(\varphi) \end{pmatrix}$$

One obtains curves with nonsingular parametrization (|c'| > 0) if *aa* is choosen large enough. And since $h(\varphi)$ equals the scalar product between $c(\varphi)$ and the unit normal $n(\varphi) = (\cos(\varphi), \sin(\varphi))$ one has a simple geometric interpretation: $h(\varphi)$ is the distance of the tangent at $c(\varphi)$ from the origin.

2. Background And Explanations

A convex body in \mathbb{R}^n is a compact subset \mathbb{B} having non-empty interior and such that it includes the line segment joining any two of its points. A hyperplane H in \mathbb{R}^n is called a supporting hyperplane of \mathbb{B} if it contains a point of \mathbb{B} and if \mathbb{B} is included in one of the two halfspaces defined by H. It is not difficult to show that every boundary point of \mathbb{B} lies on at least one supporting hyperplane, and that \mathbb{B} is the intersection of all such halfspaces.

A smooth, closed, planar curves c is called *convex* if its tangent at each point intersects c only at that one point. The complement in \mathbb{R}^2 of such a curve has a single bounded component, the *interior* of the curve, and one unbounded component, its *exterior*. The curve is the boundary of its interior, and we denote by \mathbb{B} the curve together with its interior. It is easy to see that \mathbb{B} is a convex body in \mathbb{R}^2 , as defined above, and in fact the tangent line at any point of c is the unique supporting hyperplane (= line!) containing that point. (There are of course more general planar convex bodies. For example if P is a closed polygon in \mathbb{R}^2 together with its interior, then P is a convex body, but there are infinitely many supporting lines through each vertex, while the supporting line containing an edge contains infinitely many points.)

Now let O be some interior point of c and take Oas the origin of a cartesian coordinates by fixing a ray from O as the positive x-axis. With respect to these coordinates, at each point p on c the outward directed unit normal at p will have the form $n(\varphi) =$ $(\cos(\varphi), \sin(\varphi))$ where $\varphi = \varphi(p)$ satisfies $0 \le \phi \le 2\pi$. If we as usual think of \mathbb{S}^1 as the interval $[0, 2\pi]$ with endpoints identified, then it can be shown that the map $p \mapsto \varphi(p)$ is a smooth one-to-one map of c with \mathbb{S}^1 , so that the inverse map gives a parametrization $c(\varphi)$ of the curve by \mathbb{S}^1 . (This just says that given any direction in the plane, there is a unique point pon c where the outward normal has that direction, and the point p varies smoothly with the direction.) The Minkowski support function for the curve c is the function h defined on \mathbb{S}^1 by letting $h(\varphi)$ be the distance from the origin of the line of support (or tangent) through $c(\varphi)$, that is $h(\varphi) := n(\varphi) \cdot c(\varphi)$, the scalar product of $c(\varphi)$ and $n(\varphi)$. From this definition it is easy to reconstruct the curve in terms of its support function as in part 1.

3. Things To Observe

Recall one has in any parametrization the curvature formula

$$n'(t) = \kappa(t)c'(t),$$

which in the present case reduces to:

$$1/\kappa(\varphi) = h(\varphi) + h''(\varphi) = |c'(\varphi)|.$$

Clearly aa has to be large enough to make κ positive and the parametrization nonsingular. Adding a linear combination of $\cos(\varphi)$ and $\sin(\varphi)$ to the support function corresponds to a change of only the origin, the shape of the curve stays the same. The $bb\cos(\varphi)$ -term in the support function is therefore not really necessary, but one can use it to see how the parametrization of the curve changes.

The cos-terms in even multiples of φ make up the even part $(h(\varphi) + h(\varphi + \pi))/2$ of h. The origin is the

midpoint of curves with even support function. If h is odd except for the constant term, i.e.,

$$h(\varphi) = aa + (h(\varphi) - h(\varphi + \pi))/2,$$

then one obtains curves of constant width w where:

$$w = h(\varphi) + h(\varphi + \pi) = 2 aa.$$

The default curve in 3D-XplorMath is such a curve of constant width and the default morph shows a family of such curves. We emphasize the width of our curves by drawing them together with their pairs of parallel tangents. Since the (non-)constancy of the distance between these parallel tangents is difficult to see we have added a circle of the same width (= diameter). One cannot easily recognize how many extrema the curvature $\kappa(\varphi)$ has. To see it clearly we recommend selecting the entry *Show Osculating Circles* from the Action Menu, since the evolute has a cusp at every extremal value of κ .