
Bianchi-Pinkall Flat Tori in S3 *
See Clifford Tori, Linked Tori and their discussions first.

1. Parameter Dependent Formulas in 3DXM
We can parametrize S3, considered as a submanifold of C2,
by:

F (u, α, v) = (cos(α)eiueiv, sin(α)eiue−iv),

where u ∈ [0, 2π), α ∈ [0, π/2], and v ∈ [0, π]. We will get
the Bianchi-Pinkall Tori first as flat tori in S3 by taking
α to be a function of v,

α := aa + bb sin(ee · 2v)
(although the theory allows more general choices.) Next
we stereographically project S3 from

p = (cos(cc · π), 0, sin(cc · π), 0)
to get conformal images of the flat tori in S3. The lines
v = const are circles, the stereographic images of the Hopf
circles u 7→ F (u, α, v).

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The Default Morph chooses ee = 5 and changes the am-
plitude bb thus increasing the five ’ears’ of the torus. The
Range Morph starts with a narrow band between two Hopf
circles and widenes this band to the complete surface. Fi-
nally, the Conformal Inside-Out Morph, 0 ≤ ff ≤ 2π,
isometrically rotates S3 so that the Hopf circle v = 0 is the
rotation axis. The stereographic image of this rotation is a
conformal transformation of R3 ∪{1} which “rotates” R3

around a circle on the pictured torus. In the case aa = π/4
we obtain for ff = 0 and ff = π the same torus, but in-
side and outside interchanged. This is best viewed with
the default Two Sided User Coloration, selectable from
the Surface Coloration Submenu of the Action Menu.

2. Background and Explanations
The tori that we usually see are, from the point of view
of complex analysis, rectangular tori, meaning that they
have an orientation reversing symmetry and the set of fixed
points of this symmetry has two components. (The bet-
ter known tori of revolution have isometric reflections with
two circles as fixed point sets.) Of course one tries to de-
form these tori to obtain non-rectangular ones. Obviously
one can destroy the mirror symmetry, but this does not
imply that one gets tori with a non-rectangular complex
structure. The first proof, by Garcia, that one can embed
all tori in R3 was non-constructive and difficult.

A simpler and constructive way to get tori with arbitrary
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conformal type was found by Pinkall, whose idea was to
construct tori that are flat in S3 (and hence have an easy
way to compute their conformal type from their flat ge-
ometry), and then stereographically project them to R3.
While the resulting tori are no longer flat, this does pre-
serve their conformal type.

The construction of flat surfaces in S3 goes back to 1894,
when Bianchi classified all flat immersions in S3. In partic-
ular, he realized that the two families of asymptotic lines of
a flat surface in S3 are left translations of a pair of curves
that are either great circles or have constant torsion +1
and −1, respectively. The left translations arise by view-
ing S3 as the group of unit quaternions. An open problem
for Bianchi was to determine when his flat surfaces were
closed.

The first case when one of the curves is a great circle is of
special interest for this problem. To explain why, we will
need the Hopf fibration. Thinking of S3 as being part of C2,
we can multiply points of S3 by eiu, thus fibering S3 with
circles, the Hopf circles, and the set of all such circles forms
a metric space with distance being the distance between
the Hopf circles in S3. As such it is isometric to a 2-
dimensional sphere of radius 1/2. We thus obtain a natural
projection S3 → S2, the Hopf map. It can be written
as (z1, z2) 7→ z1/z2, where we interpret the range as the
Riemann sphere Ĉ. Moreover, Hopf circles are mapped to
Hopf circles by left translations.
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Now suppose we have a flat surface in S3 where one of the
generating curves is a great circle. We can arrange S3 so
that this great circle is part of the Hopf fibration, and thus
all curves of the same family of asymptotic lines are Hopf
circles. The surface in S3 is thus invariant under the Hopf
action and projects to a curve in S2 under the Hopf map.
Vice versa, the preimage of a curve in S2 under the Hopf
map yields a flat surface in S3. In case the curve in S2 is
closed, the surface in S3 is a flat torus. (The explanation
so far is described in more detail in Spivak IV, p. 139ff.)

Pinkall found a simple way to determine the conformal
type of the flat torus in terms of the geometry of the curve
in S2 — in particular it was then easy to see that all pos-
sible conformal types can occur.

3. Visualizing Parts of the Theoretic Description
We cannot visualize S3 in such a way that all distances are
preserved. We will use stereographic projection from p =
(cos(cc ·π), 0, sin(cc ·π), 0) to map S3−{p} one-to-one onto
R3. Recall that: angles are not changed by stereographic
projection, circles are mapped to circles or straight lines,
and the images of great circles meet the equator sphere in
antipodal points, so many properties of S3 get represented
in geometrically comprehensible ways.
Our parametrization F of S3 emphasizes the Hopf fibration
since the great circles u 7→ F (u, α, v) are indeed the orbits
of the Hopf-action of S1 on S3, given by (u, p) 7→ eiup.
Each such “Hopf Fiber” lies in one of the parallel tori α =
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constant, and the great circles α 7→ F (u, α, v), meet these
(α = constant)-tori orthogonally, so that α measures the
distance between them.
We get all the Hopf circles on each α-torus for 0 ≤ v ≤ π,
except that those tori degenerate to just one Hopf circle if
α = 0 or α = π. This makes it plausible that (α, 2v) are
polar coordinates on the metric space of Hopf circles, on
the image S2 of the Hopf map.
Pinkall has observed that the closed curves on this image
sphere, in polar coordinates given as: (α(s), 2v(s)), (with
α(s) never equal to 0 or π/2) allow one to write down
immersed tori in S3 as:

(u, s) 7→ (F (u, α(s), v(s)).
For example taking α(s) = π/4 gives the “Clifford Torus”
in S3, a minimal embedding of the square torus. For other
constant α(s) in (0, π/2) one gets the above parallel family
of α-tori, the lengths of their two orthogonal generators are
2π cos(α) and 2π sin(α).
On all of these tori we still have that the parameter lines
s = constant are Hopf-Fibers, and since these are equi-
distant (as orbits of an isometric action) it follows that
the metric is flat. Pinkall proved that length and area of
the curve in S2 determine the conformal structure of the
torus in S3, hence in R3, and that all conformal structures
occur.
Observe that the usual tori of revolution in R3 are all
rectangular, and most of the Bianchi-Pinkall tori shown
by 3D-XplorMath are very different from these. The tori
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with aa = π/4 are all rhombic, because they can be ro-
tated into themselves by 180◦ rotations (in S3, not in R3)
around any of the Hopf-Fibers on them. A cyclic morph
with 0 ≤ ff ≤ 2π rotates around the circle v = 0 (we see
of course the stereographic image of that rotation). For
ff = π we get an anti-involution of the torus with the cir-
cle as the (connected) fixed point set—only rhombic tori
have such anti-involutions. (The square torus is rectangu-
lar and rhombic.) In the rhombic case aa = π/4 we get for
ff = π/2 and ff = 3π/2 surfaces in S3 that pass through
p so that the stereographic images in R3 pass through 1
— otherwise we could not turn the torus inside out con-
tinuously.
The program takes α(v) := aa + bb sin(ee 2v) (with ee = 3
for the default image and ee = 5 for the default morph),
allowing rather different examples.
Again, these tori are shown in R3 by using the (confor-
mal) stereographic projection of S3 \ {p} → R3, where
p = (cos(cc · π), 0, sin(cc · π), 0) . Morphing cc therefore
gives other images of S3, in particular other conformal im-
ages of these tori.
H.K.
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