
Addition on Cubic Curves.*

See also the Action Menu of the Parabola “Show Normals
through Mouse Point” and the comments in the ATO.
As an introductory example view the unit circle as a group.
Then the addition of angles φ ∈ (R mod 2π) gets translated
via the parametrization

x = cos(φ), y = sin(φ)
into

(x1, y1)⊕ (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).
Once this addition law is known one does not need the
transcendental functions sin and cos to “add” points on
the circle. Even to do this addition with ruler and compass
is easy. And it is amusing to note that the Pythagorean (or
rational) points of the circle are a subgroup, e.g. (3/5, 4/5)⊕
(12/13, 5/13) = ((36− 20)/65, (15 + 48)/65).

In a similar way there exists a geometric addition on cubic
curves, and if the cubic is parametrized with appropriate
functions (defined either on C, or on C/2πZ, or on C/Γ, Γ
a lattice in C) then the well known addition in the domain
is, under the special parametrization, the same as the ge-
ometric addition on the cubic. The simplest instance is
when the cubic is the graph of a cubic polynomial without

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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quadratic term: y = x3 + mz + c. Then, if we have two
points (x1, y1), (x2, y2) on this cubic and join them by a
line, this line intersects the graph in a third point (x3, y3)
such that x1+x2+x3 = 0. This gives a geometric definition
of addition on this cubic graph.

Addition on a polynomial cubic graph without
quadratic term. Every line intersects so that x1+
x2 + x3 = 0. Note discrete subgroup.

Similarly, let us map C bijectively onto the Cuspidal Cu-
bic by z 7→ (z2, z3). In this case, if we have z1 + z2 +
z3 = 0, then the tangents at the three points (z2

j , z3
j )

are concurrent—we have seen this as a property of the
Parabola, because the Cuspidal Cubic is the evolute of
the Parabola. One can also see the previous colinearity as
reflecting addition, because the three points (z2

j , z3
j ), j =

1, 2, 3, of this cubic lie on a line if 1/z1 + 1/z2 + 1/z3 = 0.
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Addition on the cuspidal cubic z 7→ (z2, z3). Note
the discrete subgroup. If z1 + z2 + z3 = 0, then
the tangents at these three points are concurrent.
If 1/z1 +1/z2 +1/z3 = 0, then these three points
lie on a straight line.

The next case is the group C/2πZ. The trigonometric
functions identify points in C mod 2π. We map this group
to a cubic curve by x := tan(z/2), y := sin(z), so that
y = 2x/(x2 + 1) and this cubic is again a graph. The
addition theorems tan(z + w) = (tan(z) + tan(w))/(1 −
tan(z) tan(w)) and sin(z+w) = sin(z) cos(w)+cos(z) sin(w)
with cos(z) = 1− 2 sin(z/2)2 = 1− sin(z) · tan(z/2) again
give an addition on this cubic graph: it is a geometric addi-
tion because the three points (xj , yj) lie on one line iff z1 +
z2 + z3 = 0. The name “geometric addition” is even more
justified because the third point (x3, y3) can be constructed
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with ruler and compass from the other two. In fact, for re-
peated additions a ruler suffices: As a preparation we have
to add to all points in sight the 2-division point (1, 0) =
(tan(π/2), sin(π)) as follows: (x, y)⊕(1, 0) = (−1/x,−y).
One needs ruler and unit circle for this. Then the lines
through (x1, y1), (x2, y2) and (x1, y1) ⊕ (1, 0), (x2, y2) ⊕
(1, 0) intersect in the point (x3, y3) = −(x1, y1)⊕ (x2, y2).

!

!

!

P2

P2+(    ,0)

P1

P3 := - (P1 + P2)

P1+(    ,0)

P3+(    ,0)

Addition group S1 on a cubic that is the graph
of x 7→ y = 2x/(x2 + 1), parametrized by x :=
tan(z/2), y := sin(z). Note the finite discrete
subgroup. (1, 0) = (tan(π/2), sin(π)), the point
at infinity, is the only point of order 2.

So far we have seen the circle part of the cylinder group
C/2πZ. To see a generator of the cylinder we replace t, x, y
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by it, ix, iy, then we obtain x := tanh(z/2), y := sinh(z),
so that y = 2x/(1 − x2). The component of the graph
through 0 is a subgroup isomorphic to R. It represents
one generator of the cylinder. The other two components
represent the opposite generator with one point missing:
the 2-division point opposite 0 is the point (1, 0) on this
cubic. This allows the same ruler construction of addition
as before, except for a sign change in (x, y) ⊕ (1, 0) =
(+1/x,−y) (because 1/i = −i).

(x,y)+(   ,0) = (1/x,-y)

!

!

!

!

P2

P1

P3 := - (P1 + P2)

P2+(    ,0)

P1+(    ,0)

P3+(    ,0)

Addition group R∪R on a cubic that is the graph
of x 7→ y = 2x/(1 − x2) and is parametrized by
x := tanh(z/2), y := sinh(z). (1, 0) is the only
point of finite order. Note the infinite discrete
subgroup with one finite subgroup of order 2.
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Finally we come to the group C/Γ. The parametrizing
functions of the previous example, tan(z/2), sin(z), must
be replaced by Γ-invariant, “doubly periodic” functions,
also called elliptic functions. The simplest of these are
those of degree two, as maps from the torus T 2 := C/Γ
to the Riemann sphere S2 = C ∪ {1}. Two facts are
important:
(i) Pairs of such functions satisfy cubic equations such as

(w2 + 1)v = const · (v2 − 1)w. The solution set of any
cubic equation is called a cubic curve.

(ii) There are addition formulas, analogous to those for
sin and cos.
They determine the pair (v(z1 + z2), w(z1 + z2)) from
the pairs (v(z1), w(z1)) and (v(z2), w(z2)).

It turns out that these addition formulas are again “geo-
metric” as in the previous cases, namely, the three pairs
(v(z1), w(z1)), (v(z2), w(z2)), (−v(z1 + z2),−w(z1 + z2))
lie on a line. Therefore we can again define addition on
the cubic geometrically:

Join the points to be added by a line and take the third
point of intersection with the cubic as the negative of
the sum.

The addition formulas are simple enough so that the ge-
ometric addition is again a “ruler and compass construc-
tion”. The compass is only needed to add 2-division points
as in the previous case, all further additions can be done
by intersecting lines only.
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w

v

P1 = (w,v)

P2

P3 = - (P1+P2)

P1+T = (-1/w,-v)

P2+T
P3+T

2-division point T = (     ,0), T+T = 0!

(Notice the discrete subgroup)

Addition on a general cubic:

(w1, v1)™(w2, v2) = (
w1 + w2

1− w1w2
· v1 − v2

v1 + v2
,
1 + w1w2

1− w1w2
· v1 − v2

1− v1v2
)

.
The elliptic functions v, w, parametrizing the above cubic
curve have numerous properties that can be used to define
them. For example, they are numerically accessible, since
they are solutions of the following system of differential
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equations (compare tan0 / tan = 1/ cot+ cot):

v0

v
= w0(0)

µ
1
w
− w

∂
,

w0

w
= v0(0)

µ
1
v

+ v

∂
,

with v0(0)/w0(0) = −2 for the above cubic. These imply
functional equations for v, w so that more similarities with
the trigonometric case, like (sin0)2 = 1− sin2, become ap-
parent:

µ
v0

v

∂2

= w0(0)2
µ

1
w
− w

∂2

= w0(0)2
√µ

1
w

+ w

∂2

− 4

!

= v0(0)2
√µ

1
v
− v

∂2
!

− 4w0(0)2,

(v0)2 = v0(0)2
µ

(1− v2)2 − 4
w0(0)2

v0(0)2
· v2

∂
.and hence:

Every differential equation

(f 0)2 = F (f) implies 2f 00 = F 0(f).

The first order equation determines f 0 only up to sign while
the second order equation determines f 00 uniquely, in par-
ticular for trigonometric and elliptic functions.
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