Schwarz PD Family Minimal Surfaces

schwarz pd family
Schwarz PD Family Minimal Surfaces. This is a 2-parameter family of triply periodic genus 3 minimal surfaces.
schwarz pd family 001
schwarz pd family 001
schwarz pd family st
schwarz pd family st
schwarz pd family sw
schwarz pd family sw
       About the Schwarz PD Family

                     H. Karcher

  This is a 2-parameter family of triply periodic genus 3 surfaces.
In each case the original surface and the conjugate surface are
embedded. The most symmetric example (with a cubic lattice)
which is obtained when cc = 0, dd = 0,  was already
constructed by H. A. Schwarz.  When Alan Schoen
found more triply periodic surfaces around 1970 he named the
two surfaces which Schwarz found the P-surface (P for cubic
primitive) and the D-surface (D for diamond). He also found a
third embedded(!) surface in the associate family of these, the
Gyroid (associate parameter 0.577 which is approx. 52 degrees).
If dd=0 then a fundamental cell for the lattice is a prisma with
square base, in the morphing cc changes the height of the prisma.

K. Grosse-Brauckmann, M. Wohlgemuth: The Gyroid is embedded
and has constant mean curvature companions.
To appear Calc. Var. 1996

  For a discussion of techniques for creating minimal surfaces with
various qualitative features by appropriate choices of Weierstrass
data, see either [KWH], or pages 192--217 of [DHKW].

[KWH]  H. Karcher, F. Wei, and D. Hoffman, The genus one helicoid, and
         the minimal surfaces that led to its discovery, in "Global Analysis
         in Modern Mathematics, A Symposium in Honor of Richard Palais'
         Sixtieth Birthday", K. Uhlenbeck Editor, Publish or Perish Press, 1993

[DHKW] U. Dierkes, S. Hildebrand, A. Kuster, and O. Wohlrab,
           Minimal Surfaces I, Grundlehren der math. Wiss. v. 295
           Springer-Verlag, 1991