Construction of Minimal Surfaces

H. Karcher ( Bonn )

In my contribution to this series of lectures, I will
explain how the remarkable minimal surfaces which have been
discovered in this decade can be constructed. Also included
are faméus examples from the last century.

The organization of my lectures will be as follows:

Welerstrass Representation and Symmetries
Spherical Examples
Toroidal Examples

Conjugate Plateau Construction
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1. Weierstrass Representation and-Symmetries

1.1 Notations, definitions, basic formulas.
We describe pleces of surfaces as immersions F of parameter

domains D into R3

Immersion F
. —_— Ra
Gauss map N

The basic invariants of the surface, namely Riemannian metric
g ‘and shape operator S , are defined in terms of the
de}ivatives OF , 8N of F and N . Ve denote directional
derivatives in direction X by @&F:X or B84F
< . .‘
.:Riemannian metric: .é(X,Y) 1= < a%ox, 8F-Y > (cf. 1.4.2)
Shape operator: 9F-S-X t= aN-X
The eigenvalues of‘ S are called principal curvatures.

Second fundamental form: b(X,Y) := g(SX,Y)

The shape operator also allows to split the second derivative

. 82F of F 1in its tangential and normal part:

< N, 8F:Y > = 0 => < 9N-X, 9F-Y > + < N, SX(QYF) > =0




REMARK. The sign convention is the one preferred in analysis.
For surfaces which are levels of functions f : RS — R one
has a preferred normal N := grad f -|grad fl-l . If |grad f|
= 1 then S equals the Hessian 8 grad f , and this
convention makes the principai curvatures of the sphere ( f(p)

:= |p| ) positive.

The tangential part of SX(SYF) is used to define the

covariant derivative v of the Riemannian metric.

Covariant derivative: OX(QYF) = SF-va - g(SX,Y)*N

The differentiation of tensor fields, e.g. endomorphism flelds

like S , satisfies the product rule

VX(S-Y) = VXS-Y + S-VXY .

We are heading for a close connection between minimal surfaces

and complex analysis. Geometrically, multiplication by <

is 90 -rotation D90 : C— C . The Riemannian metric ¢

makes every tangent space of (Dz,g) into a euclidean plane.

.

Therefore we have 90°'-rotation as an endomorphism field-. D90

maps parallel vector fields X along curves vy (i.e., Vv X
Y

90

= 0 ) to parallel vector fields Y =D X along ¥ . The

definition of the covariant derivative of a tensor field

»




therefore gives

v D90 =0 , 90 -rotation is (covariantly) parallel.

One further differentiation of the definitions of § and v

gives two famous equations:

Codazzil equation: VXS-Y = VYS'X

Gauss equation: curv(Ra) = curv(g) - det S

(We omit the definition of the curvature tensor of the Riemannian
metric g , it will not occur explicitly since we use det S .)
Finally, we consider the Riemannian metric g and the‘shape )
operator S as given geometréc data.on the parameter domain

2

D Then one c¢an interﬁret the definitions of § and VvV as

a differential system for N , 8F , the

SURFACE EQUATIONS:

2

TPy yF 1= 9x(8yF) - BF-V,Y = - g(SX,Y)-N

ON-X = @F-S-X ,

The Codazzl and Gauss equations are the integrability conditions
for this system. To understand how the surface 1s determined by
this differential system from its geometric data g , S observe

the following:



If y 1is a geodesic in (Dz,g) then the space curve Fey has

.

the principal normal Ney and the binormal 8F-D90 -? . There-

fore g and S determine the Frenet data (i.e., curvature « ,
torsion <t ) of the space curve Fey :

FRENET DATA of Fey :

K := < 8 (8,F), Ney > = - g(S7,7)

Y ov
(1.1.1)
t = < 3 N, oF -p° Y > = g(Si.Dgo ¥)
Y
(1.1.2) NOTE:

A geodesic curvature line has Sy ~y , i.e., has
t=0, it 1s therefore a planar curve. A geodesic

asymptote line has S% L % , L.e. x 0, it is

therefore a straight line on the surface.

1.2 Minimal Surfaces.
By definition the shape operator controls the derivative of the
normal along a surface. However, 1t also controls the change of

the metric when going to parallel surfaces F + gN :

gS(X.Y) 1= < SXF + s-SXN, SYF + s~8YN >

d_ "
de €e(X:¥) |gao = < O%N: ®

N >

= 2 g(SX,Y)




In particular, trace S = 0 1is the condition for the first
variation of area to vanlsh. Because of the surface equations
this is the same as trace VzF = AgF = 0 , 1.e., the immersion

is Laplace-Beltrami harmonic. So we have the equivalent
DEFINITION of MINIMAL SURFACES
Tr S = 0 or AgF = 0

1.3 Connection with Complex Analysis.
Since holomorphic functions are conformal maps it is natural that
we start by introducing conformal (or isothermal) coordinates on
the surface. In general this is a nontrivial P.D.E. problem;
minimal surfaces however are born together with very natural
conformal coordinates:
AgF = 0 means that the restriction of any linear function on
R8 to the surface gives us a harmonic function f , Agf = 0
Recall that in the complex plane € a harmonic function ¥
can be considered as the real part of a holomorphic function;
the imaginary part £f* can be reconstructed (on simply connected.

regions) by integrating
grad * = t-grad
To imitate this construction of conformal maps in the case of

minimal surfaces we also first construct a vector field V by

90 '-rotation of grad f




90 egrad f

We proved that D90 is v-parallel, therefore

90 -7 grad T

This and Agf = 0 give rot V = 0 . Therefore we have in the
same way as in the complex plane: The vector field V 1is, on
simply connected regions, the gradient of another ("conjugate")

function £*

V = grad f' on simply connected regions,

g0’

grad f* = p -grad f ‘or ar® = - 6f-D9° .

Of course, any pair of functions f , £* with orthogonal

gradients of equal lengths defines a conformal map

(£.£*) : (0%,g) — R% or £ + if* : (D%,g) — C

Since ¢ :=f + if" satisfiles aw.ng°'x = {+3¢+X We now see,
that the Riemannian 90 -rotation indeed plays the role of
multiplication by i . At this point we have constructed a
natural atlas of conformal coordinates for a given minimal
surface; in other words, we have made the minimal surface into

a Riemann surface M2



We can apply the construction of a conjugate F* to the given

minimal immersion F . Since oF" = - aF-D90 we see that

(1.3.1) F, F define the same Riemannian metric g , hence
AgF' = 0 : the "conjugate" immersion F* is
also minimal !

(1.3.2) F, F have at corresponding points parallel tangent

planes; that means: F, F' have the same Gauss

map N !
8N = oF-s = - 9F-p°% .p%0 .g
= oF* - (0%% .s) = aN* , hence

(1.3.3) s* = D90 +S , 1.e., F , F' have closely related shape

operators.

At thisvpoint we have constructed from a given minimal immersicn
F a holomorphic curve (recall that F' 1s only defined on some
covering of Mz ): ¢ :=F + iFT ﬂz — C3 . We observe an
additional property of the curve ¥ in terms of the C-bilinear

extension << , >> of the Euclidean metric < , > on R3

(1.3.4) << Q¢ -X, B¢ X >>
= << 9F+X + {+8F"+X, 8F+X + i-8F +X >>
= < OF-X, BF-X > - < HF X, 8F"-X >

+ 2i-< OF-X, OF X >




Such holomorphic curves are called null-curves.

Conversely, a holomorphic curve ¢ has with respect to some
complex local coordinate a harmonic real part F . Using
oF" = - 8F-D90 we see that the real part F of a holomorphic
null curve is conformally parametrized. But conformal metrics
have the same holomorphic functions and therefore the same

‘harmonic functions; this proves AgF = 0

So we have seen: MHinimal surfaces in R3 are precisely

the real parts of holomorphic null curves in C3 .

The (locally) isometric family of minimal surfaces

4

(1.3.5) F, i= Rel e P F 4+ iFY ) )

is called the associated family of F .

1.4 Welerstrass Representation.
The holomorphic curve ¥ of the previous section can be

written as

¥ = f ¥'dz = f ( oF - i-8F-D°0 ), << y', ¥ >> =0,

2

where ¥'dz 1s defined on the given minimal surface M (one

does not have to go to a covering).
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Weierstrass has written the integrand ¥'dz 1in a geometrically

particularly useful way:
Weierstrass Representation
(1.4.1) ¥'dz = ( %( 1_g ). %( 1,¢ ). 1 )-dh

First, << ¥', ¢' >> = 0 1is true for this Weierstrass formula.

Conversely, every dy¥ can be written this way:

- dy, - idy, dy. + 1dy, )-1
g := ¥, = g

because of << (d$1.d¢2.d¢3), (d¢1.d¢2.d¢3) >> = 0
Next, dh 1is defined in terms of the (harmonic) vertical height

function F3 on M2 (while h 1is only defined on Mz ):

: 90"
dh = dF3 - 1 dF3 D
And, most important, stereographic projection of g (using
the same "vertical” direction as for dh ) 1s the Gauss map
N of the surface:

Stereographic Projection of g 1s N :

N ol 2Reg 2Img, lgl?-1)

lgl2 + 1

- 11 -




Proof: Clearly real and imaginary part of

i( 1 _ if 1
( 2( g g ). 2( p + g ), 1 ) represent two (orthogonal)
tangent vectors to the surface in R3 . Therefore

if 1 _ if 1 2 _
<<(2(g g).z(g'fg).l),(ZReg.ZImg.Igl 1) >

= g - geg + Igl2 - 1 =0 proves that N 1is indeed normal to the

surface.

The Weierstrass representation, therefore, writes a minimal
surfaces doun in termg of its Gauss map and the differential of

i1ts height function.

The Riemannian metric, the Gauss curvature and the shape operator’
are also quickly obtafned from these "Weierstrass data”.
From (1.3.4) we have

< 9F-X, OF-X > = L |ay-x12

Bl N

(g1 + 137 )2 1anex 2

To avoid confusion with the Gauss map I'l1l1 from now on write

the Riemannian metric as
- l -———-1 .
(1.4.2) ds = 2( lgl + T2l ) {dhl

(Locally of course |dh} = |h'{ldzl| ; then |dz| denotes the

euclidean coordinate metric.)

- 12 -~




The Gauss curvature is by definition the volume distortion of the
Gauss map. The Gauss map 1is conformal, the metric 1s conformal
to a holomorphic coordinate metric, therefore volume ratios are

squares of length ratios:

K - . lan-xi®
lds-X12

First with respect to a local coordinate (and recalling that

stereographic projection has the conformal factor 4(1 + Iglz)-z

)

and then coordinate free this is

(1.4.3) K= - Ig'I2° 4 2 .2 41 2 2 :
(1+ 1g12) ( gl + ) TN
gl /- .
e o | —2 L1g 1
1" 2
gl + o7 ldh|

Finally, to describe the second fundamental form, let 2z denote

2

a local holomorphic coordinate for M and W € TZM2 = C a

tangent vector. Then

2

b(W,W) - < @ W WF' N > {Definition of b )

- < Re(y"-W?), N » (F = Re ¥ )

"Now insert Welerstrass formula for "
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b(W,W) = - Re[ 98 () - an (W) - << [ %(él - g), %(él . g),O }. N >> ]

and use that N 1s stereographic projection of g :
(1.4.4) b(W,W) = Re( §E(W)odh(W) )

Note also that the frequently used quadratic differential on
‘the minimal surface is easily expressed by the Welerstrass
data. |

Since geodesic curvature lines and geodesic asymptote lines

wiil be recognized as symmetry lines we also note (cf. 1.1.2)

W 1is an asymptote direction <=> %E(W)-dh(W) € {R .
The principal curvature diréctions on a minimal
(1.4.5) surface are angle bisectors of asymptote direction

i.e.,

W 1s a principal curvature d '
<=> Z&(w).dh(W) € R .
direction g

1.5 Symmetries of Minimal Surfaces.
1.5.1 Reflection Theorem. If a planar geodesic resp. a straight,

line lies an a complete minimal surface, then
reflection in the plane of the planar geodesic resp.
180 °-rotation around the straight line is a congruence

of the minimal surface.
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Proof: From S = D90°.s (1.3.3) and the Frenet data for
geodesics (1.1.1) we see that a planar geodesic on a minimal
surface F 1is a straight geodesic on the conjugate surface o
and vice versa. We assume that the planar geodesic is in the
x-y-plane and that the conjugate straight line is the z-axis.

We use the vertical linear function to get a harmonic function

on the minimal surface which we use as in 1.3 to get natural
holomorphic coordinates. These coordinates map the symmetry line
into a curve with constant real part, l.e., the imaginary axis
(after translation). The Welerstrass holomorphic curve satisfies

in" these coordinates
W(iR) cR x R x iR ¢ €3 1

The usual reflection principle now gives

'#(" 2 ) = ( “'1(2)' ‘FZ(Z). - ‘#3(2) ) .

For F = Re ¥ this is a reflection in the x-y-plane, for

F*' = Im ¥ this is a 180°-rotation around the vertical axis.
We shall use this as follows:

1.5.2 Application.
If in some holomorphic coordinates of a minimal immersion F

there is a line ¢ such that the Gauss image ge+o 1is contained

- 15 =~




in a meridian or the equator of 52 and i1f also h'eso 1is
contained in a meridian of 52 , then:
Analytic(= euclidean) reflection in o does not change

the values of ( Igl + Iél ) and of |h'|l nor does it change

the euclidean metric |dz| , therefore this reflection is a

Riemannian isometry for the metric (1.4.2)

1
gl

l * '
ds = 2( gl + 1 ) Ih'dz|

The fixed point set, the curve o , is therefore a geodesic
for this metric.
These geodesics ¢ are even more special; by assumption we

have first

v

g0 1s elther a meridian of s2 , i.e., %5(&) € R

or ge+o 1is the equator of S2 , 1.e., %g(é) € {R .,
and secondly
¢ and h'e.c have a constant phase along o .

Therefore (use 1.4.5) there is a member F¢ in the associate

family (1.3.5) such that

e 19, %ﬂ(&)-dh(&) eR
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then F¢oo is a geodesic curvature line, i.e. a line of
reflectional symmetry (1.1.2, 1.5.1) for FQ ; of course

F _— is then a straight line. 1In particularly interesting
¢+ 5 .

cases the associate parameter ¢ 1s the same for all the symmetry

lines o .

Remarks. (1) It may seem as if the assumptions of this last
application are a little special. We will see that they are
satisfied for most embedded and many lmmersed examples. 1In these
cases the recognition of symmetries from the Welerstrass data on
thé one hand is a great help in finding such a Welerstrass
representation and on the other hand it saves a large amount of
residue computa?ions when veriffing its properties. )

(1ii) Minimal surfaces i£ﬂ'R3 are, of course never compact. In
'the‘first iectupe by M. Koiso Ossefman;s theo;em.will be presented.
His theéry of finite total curvature minimal surfaces is of basic
importance for all the examples which I will describe. 1Its effect
is that their meromorphic Welerstrass data are defined on compact
Riemann surfaces. The points which are infinitely far away for
the metric (1.4.2) give ends of the minimal surface (this has to

be made precise with 2.1.7).
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2. Minimal Surfaces which are parametrized

by Punctured Spheres
First I quote a recent result:

2.1.1 Theorem (Lopez-Ros[LoR]). An embedded minimal punctured

sphere is a plane or a catenoid. (The proof depends on [LaR].)

We therefore cannot expect too spectacular surfaces. But the
spherical examples will teach us some properties of the
Weierstrass representation which we need to know before dealing
with more complicated examples.

To start the examples we combine the simplest Gauss map g(z) = z
with the simplest differential such that the Weierstrass curve

¥ 1s a polynomial. We obtain the data of
2.1.2 Enneper’'s surface [En].

g(z) =z , dh = z dz

¥(z) = 3

N
Vo
N
t
(A
N

, t( z + % 23 ), z2 )

We discuss its properties in terms of g and dh along the
lines of (1.5.2):
Reflections in straight lines through 0 are Riemannian

isometries for the metric (1.4.2)

- 18 -



ds

"
TN
[y

TzT * 1z | )-lzlldzl

All these radial lines are therefore geodesics and rotation

around the origin is an intrinsic isometry group.

To decide which of these meridians m(r) = r+z , m = z , are

curvature or asymptote lines, we use (1.4.5):

e R <=> z€eR, <R

98y -an (i) = 22

+i.
€ iR <=> 2z € e ‘R

A

Now (1.5.2) says that R , iR are planar symmetry lines
(reflection) and the 45 -meridians are straight lines on
Enneper's surface (180 -rotation).

The Rlemannian metric is compléte on SZ\{a} , and it is
nondegenerate, i.e., the surfacé is without branch points.

All the surfaces of the associate family (1.3.5) are congruent,
since the above intrinsic isometry group rotates the shape
operator of F to the shape operator of F¢

For the behaviour near the puncture we use the integrated
expression: circles c(¢) = R-ei¢ . R3 > 3 , are mapped to curves

¢® — Re( ¥(c(@)) ) which wind around the vertical axis three

times, i.e., a neighbourhood of the puncture is not embedded.

Clearly, the same arguments allow to discuss the
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Enneper's surface (2.1.21 g(z) = z
g(z) = 2 and higher order Enneper surfaces (2.1.3).
In all cases dh = g.dz.
Parametrization by geodesic polar

coordinates.

View from increasing distance
2
(g(z) = 2z7)




2.1.3 Higher order Enneper surfaces.
g(z) = z£ , dn = zXdz

The only difference is that there are more symmetry lines:

€ R : planar symmetry line

gg(ﬁ)-dh(ﬁ) = k-zK*!

€ {R : straight symmetry line ,

and the end winds (2k + 1) times around the vertical axis.

Note that the Enneper surfaces are very deformable: let P(z)

be a polynomial of degree (k - 1) and consider the data

(2.1.4) g(z) = zF + g-P(2) , dh = g(z)-dz

The behaviour near « stays (asymptotically) the same, and

all these surfaces are without branch points.

Remark. The simplest higher genus minimal immersions are
obtained from highly symmetric Riemann surfaces Mz\{l point}
with Weierstrass data such that the behaviour near the puncture

is the same as for some Enneper surface (3.2.2, 5.5.1/2).
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2.1.5 The catenoid.

"

g(z) =z , dh =

Re( w(r‘ei¢) ) = ( (- r - %)cos ¢, (- r - %)sin ¢, logr )
With (1.5.2) we see the symmetries of the explicit formula also
from the Welerstrass data:

All meridians and the equator (= S1 ) allow Riemannian

reflections for the metric

ds’('z'*lil)‘lg'z‘l

But now we have for all these symmetry lines o .
98(5)-an(é) € R

i.e., they are all lines of reflectional symmetry; the surface,
therefore, is a surface of revolution with a symmetry plane
perpendicular to the rotation axis.

This is an example where Welerstrass data are given on Sz\{o.w} :
but dh 1is not the differential of a function on this Riemann
surface: integration once around 0 adds 2n{ to ¢3 . The
conjugate minimal surface is therefore not an immersion of
52\{0.w) but of its universal cover. It is called the helicoid.
The planar symmetry lines on the catenoid are straight symmetry

lines on the helicoid immersion, and the symmetry group is a
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skrew motion.

Next I have to explain that the application of (1.5.2) does not
always succeed as automatically as the first two examples suggest.
In the derivation of the Welerstrass representation a vertical
axis was distinguished. As a result, we can detect with (1.5.2)
horizontal and vertical symmetry lines without computation —

but this is not true for other symmetry lines. As an example

consider the
2.1.6 Horizontal catenoid.

1)-2, dz
g(z) =z , dh = ( z -3 ) z
First, the Riemannian metric is complete on Sz\(tl) . curves
which run into the punctures have infinite length and curves
which run "radially” into 0 , » have finite length.

Second, reflection in R , ¢R , S1 preserves the metric

& |

' 1 1
ds = ( lz| + )~ -
izl 22 4+ 272 _ 2

and these metric symmetry lines are also curvature lines (since
%E(é)'dh(&) € R ), hence planar symmetry lines on the surface.
The other symmetries — namely reflection in circles through

+1, -1 — cannot be seen without computation.
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Finally, do the Welerstrass data lead to an immersion of Sz\{tl}
or do the punctures cause the same problems as for the helicoid ?
We could compute residues to check this, but there is a more
effective way.

We introduce the following

2.1,7 Notation. A translational symmetry of a minimal surface,
which is obtained by integrating Welerstrass data around a non-

trivial closed curve on the Riemann surface, 1s called a
period of the Welerstrass data.

Integration of Welerstrass data leads to a minimal {immersion

of the Rlemann surface iff all periods vanish.

Next we have the following useful

2.1.8 Observation. If a symmetry line runs through a puncture,
then a closed curve around the puncture can be assumed symmetric
with respect to the symmetry line. The integrated curve on the
minimal surface then consists of two congruent pieces which are

symmetric

either with respect to the plane of a reflection or with

respect to the axis of a 180 -rotation.

The period is the difference vector between the endpoints of

the two pieces of the curve, 1t iIs therefore
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either perpendicular to the plane of the reflection or

perpendicular to the axis of the 180 -rotation.

From this we see without compﬁtation: the punctures =+ 1 above
cause no periods, since two nonparallel symmetry planes run

through each puncture.

There is another family of explicit examples which are
interesting because they are embedded near one puncture, but

very differently from the catenoid. They can be found by using

only powers of z for the Gauss map and the differential:

2.1.9 Explicit examples with one planar end.

k+1

g(z) = 2z , dh = zk_1

dz

Clearly, the metric
ds = ( 1z12K 4 12172 )-ldzn

is complete on 52\{0,0} . Reflections in all meridians are
Riemannian isometries (giving again aﬂ intrinsic isometry group).
The end at « winds (2k + 1) times around the vertical axis,

as in the Enneper case. The other end however (around the
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Parametrization by
polar coordinates

punctures.

one planar end (2.1.9).

i/

\|
\I
Ny

N

S

< >

A\
SO

S

<>

SO

S

<>
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puncture 0 ) is
asymptotic to the x-y-plane !

Fewer of the meridians m(r) = r-z are also extrinsic symmetry

lines then in the Enneper case (2.1.3):
$E(@) -an(m) = (k + 1) -2¥

For k = 1 we have just one vertical planar symmetry line

( R ) and one horizontal straight line ( iR ) run through the
punctures. We know from the explicit integration that there
are no periods, but thg symmetry lines and (2.1.8) give this

directly from the Welerstrass data.

2.2. The behaviour of a minimal surface near a puncture depends
only on the expansion of g and dh near the puncture. In
particular, we can study possible embedded ends (punctured discs)
already in spherical examples. We may assume that the puncture
is at 0 (local coordinate), and by rotating the minimal surface
we may also assume g(0) = 0 . An embedded end is a graph near
the puncture and the only possibility to avoid the multiple

winding of an Enneper end is:

(2.2.1) %-dh has a double pole at the embedded end.

One then checks quickly, that the catenoid and planar ends,
which we already know, exhaust all possibilities. 1In particular
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”

we note (independent of the rotation to achleve g(0) = 0 ):

(2.2.2) At a catenoild end the Gauss map 1s simple.
(2.2.3) At a planar end the Gauss map is branched.
(2.2.4) At an embedded end where g # = : %-dh has a double

pole.

To i1llustrate that this knowledge jis already an important part
of the general picture I quote two results (which are proved

with the maximum principle):

2.2.5 Theorem (Hoffman-Meeks[HM4]). A complete properly

immersed minimal surface contained in a halfspace is the plane.
Here "properly immersed” is important because of the

2.2.6 Example (Rosenberg-Toubiana{RT]). There exist complete
minimal annull which are vertically bounded from above and below

and which are transversal to the horizontal planes which they meet.

2.2.7 Theorem (R. Schoen([rSn]). A complete minimal surface of
finite total curvature with only two ends and such that the two

ends are parallel and embedded is the catenoid.

This implies: A minimal embedding of a punctured Riemann surface
of genus > 0 must have one downward catenoid end, one upward
catenoid end (to prevent it from being in a halfspace) and at
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least one further end. The simplest examples (any genus =2 1 )

have one planar end between two catenoid ends (3.5, 5.5.5).

2.3 Examples with more than two punctures.
More punctures will make the period problem more difficult. On
the other hand, periods can also help: We found no interesting
embedded punctured spheres, but we will find a rich class of
spherical embedded minimal surfaces with one period. The most

famous one is

2.3.1 Scherk's saddle tower [Sk].

- e —2r . dz

The Riemannian metric

-1

L I |

ds = ( {zl| + Izl

is complete on Sz\(il.ti} , in particular 0 , = are at finite

1

distance. S , R, {R and the 45'-meridians allow Riemannian

reflections and (1.5.2 again !)

€ R for o = Sl, R, <R, planar symmetry

g—g(é)'dh(é)

€ iR for o = eXi'NW/4 180 -symmetry
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Scherk's doubly periodic sur- Jenkins-Serrin
face (2.3.2), Scherk's singly graph (2.4)
periodic saddle tower (2.3.1) and conjugate
a conjugate pair. o

Parametrization by level lines.
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Higher order saddle towers (2.3.3)

- 27.a -




In particular we have a horizontal symmetry line ( Sl

) through
each puncture, therefore all periods are vertical — and equal

up to sign, since other symmetries permute the punctures.

The Weierstrass image of the unit disc is therefore a minimal
surface bounded by four horizontal symmetry lines which moreover
lie in only two parallel planes. Extension by reflection in these
planes gives a complete minimal surface with one vertical period
(2.1.8). This surface is embedded if the fundamental plece 1is
embedded. We will see later (in 2.4) in a more general situation

that it is in fact a graph. Then we will also meet the conjugate

surface, in this simplest case also embedded:

2.3.2 Scherk’s doubly periodic minimal surface.

g(z) =z , dh = {-( z2 « 272 )y T

As with Enneper's surface one can easily obtain more complicated
ones by increasing the degree of the Gauss map.

The previous discussion applies also to the

2.3.3 Higher order symmetric saddle towers.

glz) = £l | 4n - ( 2K + 27K ]°1~ %g ,

2k punctures at roots of 1
(Of course the number of symmetry meridians Ilncreases

with k .)
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In addition one can also move the 2k punctures. For the
following data all the planar symmetry lines ( S1 and zk € R )

remain but no more straight lines exist on the surface:

2.3.4 Less symmetric saddle towers [Kal].

g(z) = K1 , dh = ( 2% + 27K - 2 cos ko )—1- %Z ,
l
. 2rd -
0 < ¢ £ %ﬁ s punctures at eit¢-e k

(L = 0 2 T % k—l )
(Only the planar symmetry lines were needed to conclude
that there are only vertical periods for all the

punctures and these agree (up to sign)).

What happens with these examples as ¢ - 0 ? Punctures move
together in pairs to become double poles of dh , they moreover
lie also on vertical symmetry planes. These Kk punctures

therefore (2.1.8) have no periods and the ends are catenoid ends
(2.2.2/4).

(2.3.5) The surfaces (2.3.4) with ¢ = 0 are the Kk-noids of

Jorge-Meeks.

The k-noids are not embedded. Indeed, as ¢ moves away from
19

2k ° pairs of neighbouring halfplane wings cross each other and

then the saddle towers are no longer embedded.
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Less symmetric Scherk surfaces (2.3.4), g(z2) = z ,

a conjugate pair.

Parametrization by level lines.

® This parametrization is also used for the 4-noid (2.3.8).
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Peformed Scherk surfaces [Ka 1].

Helicoidal (k = 3)~Saddle Towers
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Experience with the Enneper surfaces suggests that these examples
with a high order branch point of the Gauss map should-have
deformations. We postpone this to (2.4), because another method
is used. Instead we consider'some 4jnoids which illustrate more
complicated Gauss maps.

First we deform the symmetric 4-noid so thﬁt the =1 -éatenoid
endS»pecome smaller than the £ { -catenold ends. Since the
position of the punctures remains fixed, the deformation has to
be achieved by splitting the multiple point of the Gauss map
(similar to x3 — x-(x2 - a2 ) ), but keeping the R , iR ,
sl-symmetries. Since we want g(Sl) c s' we write a candidate

in terms of Blaschke factors:

(2.3.6) g(z) = 2z - — . % =L .

Now we determine (!) the differential dh .

First, dh needs simple zeros at =r , % % to prevent that
these zeros and poles of g create unwanted ends for the metric
ds = ( Igl + Igl™t )-1dhl . Second, dh needs double poles at

£ 1, £ { to make catenoid ends at these punctures possible
(2.2.2/4). Finally, powers of 2z have to be adjusted so that 0 ,

o are at finite disfance. The result is the differential for the

(2.3.7) 4-noid with two different pairs of orthogonal ends

dh = ( 1 - ~§i———:§ (z2 + z272) ]'( 22 - 272 )'2~
r“ +r

N'g-
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Clearly, the metric is indeed complete on SZ\(tl.ti} and has
the expected symmetry lines. Therefore the punctures are = e*i¢ ,
so that they are permuted by the vertical symmetries. The

differential for the

(2.3.8) 4-noid with non-orthogonal ends

is forced as before. All the expected symmetry lines are there.
They allow a vertical period, which is usually = O unless we

2
choose 2 cos 2¢ = —ii—ﬁz to make res. dh € iR , which

1 +r e£¢

. €

kills the period.
Without diééussion I 1ist somie more examples for illustration

purposes, see. figures.

2.3.9 4-noids with two large vertical and two small

nonhorizontal ends:

g(z) = z -3
dh = (zz-R2)~(;—2-r2)~(

* The punctures at 0 , » are without periods; p = p(r,R) has

©IN
l

N o

| S
]
N

Nlo.
N

to be chosen to kill the horizontal periods of the punctures
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at = p .

2.3.10 Two Enneper surfaces, joined by a catenoidal

annulus (or neck):

2.3.11 The same as before, but with the two Enneper ends

rotated so that no symmetry lines remain:

(
g(z) =z « &
R-et®.z - ( R-et®.z )"1

To kill the vertical pgriod choose:

tg ¢ = - tg 2 «[R2-1-§J~[R2+-L§J'1
R

=

Nlﬂ-
N




of the two

The "neck" does not join the
"midpoints"

Doubled Enneper

surfaces:

(2.3.11)

4]
Q
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2.4, The conjugate construction of embedded saddle towers.
First, I derive a useful fact which I owe to R. Krust (Paris VII),
including the proof. Note that it implies the embeddedness

statements in {Sm] immediately.

2.4.1 Theorem (R. Krust[Kr]). If a piece of a minimal surface
F 1s a graph over a convex domain D then the conjugate plece

F* is also a graph.

Proof: From the Welerstrass data we define two holomorphic

functions:
. . 1
o 1= - I gdh , T := f < dn

The projection into the x-y-plane, or conveniently the

(x + iy)-plane, can be written in terms of ¢ and < :

N = Fl + {Fz = T + C ( Fl = Re( + + 0 ) etc.)

n o= Fl’ + in’ = {T - {0

The graph assumption says lgi > 1 and therefore |g-dh| > !%-dh‘
(on nonzero vectors). Since F is a graph over a convex domain

we find for any two points P * P, € D a curve Yy on the Riemann
surface such that ney is the line segment from p, to py 3 we

also assume that ney 1s linearly parametrized. This glves
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————

dr-y'(t) = ( %-dh - g-dh }~y'(t)

=Py - Py *O0

We rotate the conjugate projection by 90° and scalar multiply

by Py - Pt

A

. |1
Py = Py Lok ‘Vlo >

. i,
<p1"pov“[?(gdh+gdh]>

= - Re[ ( Py - Py )'I? ( g-dh + %‘dh ) ]

( <z, w>=Re(zw))

1 — 1 ' T
= Re ( g+dh + =-dh )(Y')‘( g-dh - =-<dh )(y') dt
Jo g g |
(insert P, - Py )
1 2 1 2
= ( lg«dh(y') | - 'E~dh(?')| ]dt >0
Jo

( 1gl > 1)

This prove n'o?(O) = n'-y(l) , 1.e., F' is a graph.

The main analytic ingredient in our conjugate construction is
" a result by Jenkins - Serrin [JS]. They proved that certain
Dirichlet problems with infinite boundary values can be solved
for minimal surface graphs. We quote a special case in which
their sufficient condition becomes much more explicit than in

their more general case.
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2.4.2 Theorem {(Jenkins-Serrin)., Let D be a convex 2k-gon
with all edges of the same length. Mark the edges alternatingly
+ ® , - ®» ., Then there is a unique minimal graph over D which
converges to =+ «» as one approaches the edges of D . As a
minimal surface this graph is bounded by the vertical lines over

the vertices of D . It has finite total curvature.

Analytic continuation of the Jenkins-Serrin graph by 180°-
rotation around all vertical lines gives a complete minimal
surface. Any two such rotations define a translational symmetry.
The translations identify two adjacent Jenkins-Serrin-pieces to
a sphere with 2k punctures. The Gauss map 1s well defined on
this sphere, i.e., it is a rational function. The degree is

(k - 1) since along each vertical line the normal rotates by
(rn-(exterior angle of D )). The translation group generated by
the vertical rotations is in some more cases discret, but only
if k=2, 1i.e., D an equilateral 4-gon, is the complete
surface embedded. These embedded surfaces are the one-parameter

family (angle of the 4-gon) of

Scherk's doubly periodic surfaces (2.3.2).

2.4.3. Finally, we consider the conjugate piece F  of a
Jenkins-Serrin-graph F [Kal]. By R. Krust's result the
conjugate is again a graph, hence embedded. The boundary
consists of horizontal lines of reflectional symmetry which are

conjugate to the vertical lines of F . The intrinsic Riemannian
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distance between adjacent vertical lines 1s of course the same as
between the corresponding planar symmetry lines. Since the Gauss
map has a limiting normal at the puncture, the intrinsic distance
equals in both cases the euclidean distance in R3 .

In other words: The vertical beriods of the conjugate pilece F'
are equal to the edgelengths of D —— which were all the same

by construction. The horizontal symmetry lines of the embedded
conjugate plece therefore lie in only two horlzonfal Planes.
Extension by reflection builds an embedded saddle tower. The
number of deformation parameters of an equilateral 2k-gon is

(2k - 3), more than we found for Enneper surfaces with the same

degree of the Gauss map.

2.5 Examples with planar ends only. In this case the differ-
.entlals of the Welerstrass integrand are without residues and
therefore integrate to rational functions. These surfaces have

been studied in detail by R. Bryant ([Br].
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3. Minimal Surfaces which are parametrized by Punctured Tori

3.1 Elliptic Functions.
We will have to work with holomorphic maps f : T2 — S2
("elliptic functions™) in the same way as we used rational
functions on 52 in the previous lecture. In particular we
will need to know some simple elliptic functions together with
their symmetries. I will use the Riemann mapping theorem to
describe such functions because in this way we get the desired
symmetries by definition.
The Riemann mapping theorem gives us for every pair of simply
connected domains B , D S C a biholomorphic map
f : B — D . Such an f 1is unique if we prescribe at some
b € B the value f(b) and the phase of f'(b) . — If moreover
B and D are bounded by piecewise analytic arcs then f
extends continously to the boundary. This allows us to use a
more convenient normalizing condition: we can prescribe for three
boundary points of B their values in 8D . Furthermore, f
can be analytically continued by reflection in corresponding
analytic subarcs of 8B and 3D .
Finally, f' does not vanish at interior points of these analytic
subarcs (and of course not in B ). With this knownledge it 1s

easy to define elliptic functions on rectangular tori
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Consider a rectangle B

b C
6k A ,'vh L.
€ i
vx.«,,_() W nes ‘6/
and the quarter circle D : : o
eiu ad s X )o
1

The Riemann mapping thecrem and the normalizing condition
y(a) = i, y(b) = 0, y¥(c) = 1 define a unique map v : B -~ D .
The'value v(d) = eia depends on the ratio of the réctangle H

we call « the conformal parameter of the rectangle in the range

of vy .

Analytic continuation by reflection in the straight lines through
b and 0 = y(b) defines vy from the union of four such
rectangles to the unit disc. This shows also that y' does not
vanish ezcept in d and the reflected points of d . — Two more
such reflections define ¥ on a still larger rectangle and onto
the twice covered Riemann sphere; finally, this map can be

extended as a doubly periodic map.
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Since the vertices a, b, ¢, d will play no further role, 1
find it useful to write the values of 7y at these points into

the domain. This also emphasizes the symmetries.

0 -1 © 4 0
] T
. N ‘ ' y
-t . 14
4_._......_1._....:‘. e_...._.l. ‘
| /////’ Y
] )
©0 -1, 0 /’f [
1 : } .
I o
! . 1 g%
,.4_..__.:¢-.. _:“:...-——.F.e._.__--l
1 1
| . |

Domain with distinguished values of vy .

The first rectangle (before the analytic continuation) is shaded.
The branch points of ¥ are marked. The doubly periodic

extension is clear.

To show the effectiveness of this definition, we read the

A

differential equation of ¥y from this picture. The function %

has zeros at the (simple) branch points of ¥ , and % has

poles at the zeros and poles of ¥y . Therefore

-2

v 22
(3.1.1) ( %— ) = (pos. const.) - ( ?2 + ¥ - 2 cos 20 )

(Proof: The functions on both sides have the same zeros and poles
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and therefore are proportional; both functions are positive on the
segment between 0 and 1 . — The positive constant depends on
the scale of the domain rectangle, 1t is irrelevant for our

purposes.)

Since vy 1s a degree 2 elliptic function, there should be a

simple relation with the Welerstrass p-function. Indeed

i0
q:=i-X=—€_  (branch value: gq(7y)

et® - vy y=e

—iq = CtE « )

haé 0, » as double values, and the rectangle with vertices at

the branch points is mapped to the upper halfplane. This shifted

”

Welerstrass function will not be useful, we need thé Welerstrass

4

function with 1ts'zeros and poles at the zeros of Y . We'obtain

it ‘from the following mapping problem:

[ 4
"tﬁ'( o
\ ]
| _ _-dl_ 4% ] -4
]
!
1 o o % >
; #4(3-5) “
| IR PRNDN DEDEUNEL Y S
] 1
! 1
1 1

Domain with distinguished values of p-function.

- 40 -~




(Note that we use a geometric normalization, not the Mittag
Leffler expansion p(z) = 1272 + ... .) The disc represents
the upper halfplane, bounded by R , and with the symmetry lines
between 0 , ctg ¢ , ® , - tg & . Note that I use the same
parameter o to describe the branch values of y and p ;

this is implied by the branch values of q above.

Again, the differential equation for p 1is immediate from this
definition: p' has simple zeros at the three finite branch
points of p , and p' has a triple pole at the pole of p ,
therefore:

(3.1.2) p’2 = (pos. const.)p-( tg ¢ - p )( p + ctg & )

In the same way we find an equation between y and p :

(3.1.3) y2 = —= Eg ¢ - ctg «
p-5+tga-ctga

Proof: The functions on both sides have the same (double) zeros
and poles; their proportionality factor is determined since
vy = { at a point where p = - tg % and - tg % + ctg % = 2 ctg o .

In the same way we find

(3.1.4) p'*y = (pos. const.) - p
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The symmetries of the p-function include reflection (of the
values) in circles which are not meridians or the equator S1
Since this is less convenient we introduce one more elliptic

function by the following mapping problem:

84 +1 (V] - 0 .i,
b T >
| [}
| PR - ot Lol
T_.._.é',....._}:; “'r_..-.. ‘)[ ‘@Z
1 .
/ —————p
o -1 0 ,’/44 o0
| ]
1 l o 1
. 1
Rk Bt T
! . 1 ' . .
% 11 0 -4 o0 '(lbmafn with speccal

values of f )

K2

We could define f 1in terms of ¥ .'p :

) . = p
(3.1.5) Y= Gsa-psineg '

but this formula does not show all the symmetries of f as

obviously as the mapping definition.

3.2 First Toroidal Minimal Surfaces.
We start with a surface which is particularly simple to imagine,
the following "fence of catenoids” (from discussions with

D. Hoffman):
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oayfﬁ

-1+

(3.2.1)

. A0

end

If we divide out the translational symmetry, we see a torus with
two embedded catenoid ends. Recall that, by Schoen's Theorem
(2.2.7), such Welerstrass data necessarily must have at least one
period. The horizontal and vertical symmetry planes cut the
minimal surface (or the torus with its Riemannian metric) into
eight congruent pieces. The Gauss map is an elliptic function
which maps the symmetry lines to Slf; R , tR ; we recognize this
function immediately if we write the known special values into

2

the domain (= T° ), at the vertices of the tessalation:

We recognize the elliptic

function y. Therefore we

found the Gauss map of this

example:

— - -~ =~ — - —

Torus with values of 3

(]
W
-
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The differential dh needs simple zeros at those two points with
vertical normal which are not ends (to keep these points at finite
distance for 1.4.2) — and no other zeros. On a torus we need the
same number of zeros and poles, but poles of dh always create

ends for the Riemannian metric (1.4.2), therefore we have to put
the poles of dh at the punctures — in agreement with (2.2.4).

We have determined the following O-w=-pattern for dh

it implies the differential

] o9 for the fence of catenoids:

dh := f dz

The symmetries of f and vy immediately imply that reflections

in the expected symmetry lines ¢ are Riemannian isometries for
1
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