
Elliptic Functions of Jacobi Type *

What to do in 3D-XplorMath at the end of this text.

Elliptic functions are doubly periodic functions in the com-
plex plane. A period of a function f is a number ω ∈ C
such that f(z) = f(z + ω) for all z ∈ C. Doubly peri-
odic means that the function has two periods ω1,ω2 with
ω1/ω2 /∈ R. The set of all period translations is a lattice
Γ, and Γ has some parallelogram as fundamental domain.
Period translations identify parallel edges of this parallel-
ogram to a torus and elliptic functions can therefore be
viewed as functions on such a torus or equivalently as con-
formal maps from the torus to the Riemann sphere.
The simplest such functions are two-to-one maps from the
torus to the sphere. They have either one double pole
and are not very different from the Weierstrass ℘-function:
f(z) = a·℘(z)+b, or they have two simple poles; the oldest
of these are Jacobi’s functions sn, cn, dn, more below.
These doubly periodic functions have various properties
in common with the singly periodic trigonometric func-
tions. They are inverse functions of certain integrals and
therefore are solutions of first order ODEs, just like the in-
verse function of

R z
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p
1− ≥2d≥ is a solution of the non-

Lipschitz ODE f 0(z)2 = 1−f(z)2. And, as in this trigono-
metric case, differentiation of the first order ODE gives a
second order ODE which is Lipschitz, here f 00(z) = −f(z).
The trigonometric functions have more symmetries than
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their translations. These symmetries give all values from
the values on [0,π/2] × i · R. For the two-to-one elliptic
functions all values occur already on half a torus and the
further symmetries compute all these values from the val-
ues on one eighth of the torus. If the torus happens to be
rectangular, it has further symmetries: reflections which
are anticonformal. In this case, from the values on one
sixteenth of the torus, one can obtain all other values via
Möbius transformations. And, one can define interesting
elliptic functions with the Riemann mapping theorem:
The rectangle in the first quadrant of the picture below is
one sixteenth of a rectangular torus. The Riemann map-
ping theorem is used to map this rectangle to the quarter
unit circle in the first quadrant of the second picture. Rie-
mann’s theorem allows to specify that three corners of the
rectangle go to 1, 0, i and at the 4th corner the derivative
vanishes and two edges are mapped to the quarter circle:

Torus 1
4 -fundamental domain Image of JD-function

The extension of this definition to a two-to-one map from
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the torus to the (Riemann) sphere is made possible by
Schwarz Reflection. Its simplest version, for complex power
series f(z) =

P1
k=0 akzk with ak ∈ R, says f(z̄) = f(z).

We use the next step: Instead of reflection in R, reflection
in any straight or circular boundary arc (in domain and
range) extends the definition of the function.
While all rational functions can be obtained by rational op-
erations from the single polynomial P (z) = z, one needs
two elliptic functions on a given torus to obtain all others
by rational operations from these. Two choices for such a
second function are obtained if one maps three other ver-
tices of the rectangle in the first quadrant to 0, 1, i on the
quarter circle in the first quadrant (but always origin to
origin). In each case the derivative of the map vanishes at
the last corner and the 90◦ angle between adjacent edges
is opened to the 180◦ angle between the image arcs:

Image of JE-function Image of JF - or sn-function
The three functions JD, JE , JF were developed in work on
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minimal surfaces. In this context they have two advan-
tages over Jacobi’s sn,cn,dn:
a) JD, JE , JF are defined on the same torus while sn,cn,dn
are defined on three different tori, which are closely re-
lated, namely doubly covered by a common rectangular
torus. On this larger rectangular torus Jacobi’s functions
are of degree 4.
b) At points z1, z2 of the torus which are related by a sym-
metry of the four branch points of JD, JE or JF , the val-
ues J(z1), J(z2) are related by isometries of the Riemann
sphere, while for sn, cn, dn the relations between the values
are by more general Möbius transformations. In applica-
tions to minimal surfaces such isometric relations translate
into symmetries of the minimal surface, while Möbius re-
lations do not.
Example: On each rectangular torus we have Riemann’s
embedded minimal surface and its conjugate; the Gauss
map of these surfaces is the geometrically normalized Weier-
strass ℘-function (denoted ℘g), not the original ℘-function.
We have ℘g = JE · JF . If σ is a 180◦ rotation around a
midpoint between the double zero and double pole of ℘g,
then ℘g(σ(z)) = −1/℘g(z).
Jacobi’s sn-function and our JF -function (on rectangular
tori) are very closely related:
The branch values of sn are {±1,±k}, modul m = k2.
The branch values of JF are {±F,±F−1}, F :=

√
k.

The fundamental domain of sn is such that sn0(0) = 1.
The fundamental domain of JF is such that J 0F (0) = 2

F+1/F .
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The function dn is also defined on a rectangular torus and
has real branch values {±1,±

√
1− k2}.

The function cn is not defined on a rectangular torus.
cn(0),dn(0) =/ 0, cn0(0) = 0, dn0(0) = 0.
On non-rectangular tori we cannot define Jacobi type el-
liptic functions by the Riemann mapping theorem.
In Symmetries of Elliptic Functions we construct them
with a more abstract tool: One can rotate any parallel-
ogram torus by 180◦ around any of its points. This sym-
metry has four fixed points which are the vertices of a
parallelogram with half the edgelength as the fundamental
domain of the torus.
The quotient by such a symmetry is a conformal sphere!

The uniformization theorem of complex analysis states that
every conformal sphere is biholomorphic to the Riemann
sphere. Therefore we can make the quotient map into a
function by specifying three points on the torus and call
their images on the Riemann sphere 0, 1,1. Example:

Torus 1
4 -fundamental domain Image of JD-function
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180◦ rotation of the torus around the edge midpoints of the
quarter domain and the corresponding 180◦ Möbius rota-
tions extend the shown portion to a two-to-one conformal
map from the torus to the sphere.
Our computation of these images uses the ODE. We scaled
the function so that its branch values are {±B,±B−1}.
Our three Jacobi type functions JD, JE , JF satisfy the ODE:

(J 0)2 = J 0(0)2 ·
°
J4 − (B2 + B−2) · J2 + 1

¢
.

The two functions on both sides of the equality sign agree
because they have the same zeros and poles, hence are
proportional, and J 0(0)2 is the correct proportionality fac-
tor. Differentiation of this ODE and cancellation of 2J 0
give the more harmless 2nd order nonlinear ODE (which
is needed because Runge-Kutta cannot integrate the 1st
order ODE in the vicinity of the zeros of the right side,
called the branch values of J):

J 00 = J 0(0)2 ·
°
2J2 − (B2 + B−2)

¢
· J.

These equations can be used for JD, JE , JF . To be on the
same torus one has to transform the branch values as:

E =
D − 1
D + 1

, F = i · D − i
D + i

, F = −E − i
E + i

,

and to use the same scale for the fundamental domain:

J 0D(0) = 1, J 0E(0) =
D − 1/D

2i
, J 0F (0) =

D + 1/D

2
.
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In 3D-XplorMath the morphing parameter for Jacobi’s sn
is the modul m and for JD, JE , JF it is the branch value
D of JD in the 1st quadrant. Note that |D| = 1 for rect-
angular tori and Re (D) = Im (D) > 0 for rhombic tori.
Input log(D) into dd, rectangular case: dd ∈ i · (0,π/2).
Users cannot change the size of the domain of elliptic func-
tions, it is always one half of the torus, chosen so that the
values cover the Riemann Sphere once. In the domain we
use a grid made up of eight copies of one sixteenth of the
torus. The number of grid lines is the same in both di-
rections so that the grid meshes are proportional to the
fundamental domain. The default picture is, as always for
our conformal maps, the image grid and the grid meshes
show approximately the conformal type of the torus.
If one selects in the Action Menu Show Image on Riemann
Sphere one can see the symmetries of these elliptic func-
tions more clearly.
The entry Show Inverse Function in the Action Menu
offers a second visualization. It assumes that standard po-
lar coordinates on the Riemann Sphere are well known.
The preimage of this polar grid is shown. Note that the
preimages of all latitudes – except the equator – are pairs
of congruent smooth closed curves. The preimage of the
equator consists of four squares. The preimages of the
northern and southern hemissphere are therefore easily
recognized parts of the torus. – This visualization is com-
pleted only for rectangular tori.
H.K.
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