The Viviani Curve *

The Viviani curve is the intersection of a sphere of radius $2 \cdot a a$ and a cylinder of radius $a a$ that touch at a single point, the double point of the curve. Parametric formulas for it are:

$$
\begin{aligned}
& z=a a(1+\cos (t))=a a 2 \cos (t / 2)^{2} \\
& y=a a \sin (t)=a a 2 \sin (t / 2) \cos (t / 2), \text { and } \\
& x=a a 2 \sin (t / 2)
\end{aligned}
$$

Implicit equations for the two intersecting surfaces are: $x^{2}+y^{2}+z^{2}=4 a a^{2}, \quad$ a sphere of radius $2 a a$, $(z-a a-b b)^{2}+y^{2}=a a^{2}, \quad$ a cylinder of radius $a a$.
The planar projections of this curve are therefore in general curves of degree 4, but because of its symmetries the Viviani curve has two orthogonal two-to-one projections that are simpler; namely curves of degree 2 . Indeed projecting it to the y-z-plane we get a twice covered circle (use Settings Menu: Set Viewpoint and Up Direction 200,0,0), projecting to the $\mathrm{x}-\mathrm{z}$-plane gives a twice covered parabolic piece, $(1-z /(2 a a))=(x /(2 a a))^{2}$, while the projection to the x -y-plane is the degree 4 figure 8 with the equation (for $a a=1 / 2): x^{2}-y^{2}=x^{4}$.
Note that the osculating circles lie on the sphere.
R.S.P.

[^0]
[^0]: * This file is from the 3D-XplorMath project. Please see:
 http://3D-XplorMath.org/

