## The Spherical Helicoids

## See also: K=1 Surfaces of Revolution

A general helicoid can be obtained by applying a screw motion to a planar curve. Suppose the curve is given as $s \mapsto(f(s), g(s))$, then the helicoid can be written as

$$
F(s, t)=(f(s) \cos t, f(s) \sin t, g(s)+h t)
$$

with a non-zero constant $h$. The surface which is generally called the helicoid arises as the special case $f(s)=s$ and $g(s)=0$. Our more general class of helicoids is useful because it allows to construct concrete examples of surfaces that are otherwise elusive.

For example, let us specialize a little by taking $f(s)=s$ (so that the curve is a graph over the $t$-axis). Then the Gauss curvature of these helicoids is

$$
K=\frac{-h^{2}+s^{3} g^{\prime}(s) g^{\prime \prime}(s)}{\left(h^{2}+s^{2}+s^{2} g^{\prime}(s)^{2}\right)^{2}}
$$

This is just a first order ODE for $g^{\prime}(s)$, and it is easy to check that

$$
g^{\prime}(s)=\sqrt{-1-\frac{h^{2}}{s^{2}}+\frac{1}{a-\sqrt{K} s^{2}}}
$$

is a 1-parameter family of solutions in the case that $K$ is a (positive) constant. The family parameter is $a$. Observe that the additional integration constant we get by integrating $g^{\prime}$ only amounts to a vertical translation of the surface.

As all complete surfaces of positive constant curvatures are round spheres, any other example must necessarily develop singularities. This was for a long time a perfectly good reason to ignore them, and now it has been for a while a perfectly good reason to find them interesting.

For our spherical helicoids, the singularity arises as the curve $s=s_{0}$ for the value of $s_{0}$ where the integrand $g^{\prime}(s)$ becomes 0 , and is thus a horizontal circle.

The surface appears as an exercise in Eisenhart's A Treatise On The Differential Geometry of Curves And Surfaces. It was certainly well known much earlier.
M.W.

## An alternative description

The velocity vector field $X$ of a screw motion in $\mathbb{R}^{3}$ is $X(x, y, z)=(-y, x, h)$. On a surface that is screw motion invariant one finds that the unit speed curves $\gamma$ orthogonal to $X$ are geodesics: The covariant derivative $\frac{D}{d s} \gamma^{\prime}$ is zero because it is orthogonal to $\gamma^{\prime}$ and to $X \circ \gamma$, namely:
$0=\left\langle\gamma^{\prime}, \gamma^{\prime}\right\rangle^{\prime}=2\left\langle\gamma^{\prime}, \frac{D}{d s} \gamma^{\prime}\right\rangle$
$0=\left\langle\gamma^{\prime}, X \circ \gamma\right\rangle \Longrightarrow 0=\left\langle\frac{D}{d s} \gamma^{\prime}, X \circ \gamma\right\rangle+0$.
A Killing field restricts along a geodesic to a Jacobi field $J=X \circ \gamma$, and on a 2-dim surface we have (because of $\left.\gamma^{\prime} \perp J\right)$ that $J /|J|$ is a parallel field. Therefore we get from the Jacobi equation

$$
|J|^{\prime \prime}=-K \cdot|J| \text {, i.e., if } K=1 \text { then }|J(s)|=a \cdot \cos (s)
$$

We write $\gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s), \gamma_{3}(s)\right)$ and abbreviate $r^{2}=x^{2}+y^{2}, r(s):=\sqrt{\gamma_{1}^{2}(s)+\gamma_{2}^{2}(s)}$. This gives:

$$
|J(s)|=\sqrt{r^{2}(s)+h^{2}}=a \cdot \cos (s) .
$$

What remains is a first order ODE for $\gamma(s)$. We abbreviate the radial horizontal vector field as $n_{r}$, i.e.,
$n_{r} \circ \gamma=\left(\gamma_{1}, \gamma_{2}, 0\right) / r$, and we extend the orthonormal vectors $\left\{n_{r}, X /|X|\right\}$ to an orthonormal basis with $n_{z}(x, y, z):=(y \cdot h / r,-x \cdot h / r, r) / \sqrt{r^{2}+h^{2}}$. Then

$$
\gamma^{\prime}(s)=r^{\prime}(s) \cdot n_{r} \circ \gamma(s)+\sqrt{1-r^{\prime}(s)^{2}} \cdot n_{z} \circ \gamma(s)
$$

One needs $\left|r^{\prime}(s)\right| \leq 1$ and this condition gives

$$
s_{\max }:=\sqrt{\frac{h^{2}}{a^{4}}+\left(\frac{1-a^{2}}{2 a^{2}}\right)^{2}}+\frac{a^{2}-1}{2 a^{2}}
$$

One can check that this condition implies

$$
r^{2}(s)=a^{2} \cos ^{2}(s)-h^{2} \geq 0
$$

The final family, with parameters $a$ and $h$, is

$$
F(s, t)=\left(\begin{array}{c}
\gamma_{1}(s) \cos t-\gamma_{2}(s) \sin t \\
\gamma_{1}(s) \sin t+\gamma_{2}(s) \cos t \\
\gamma_{3}(s)+h \cdot t
\end{array}\right)
$$

If $h=0$ one obtains surfaces of revolution with meridian $\gamma(s)$, and $a=1$ is the sphere.

