Ruled Surfaces *

Cylinders, Cones, 1-sheeted Hyperboloid, Hyperbolic Paraboloid, Helicoid, Right Conoid, Whitney Umbrella. In other sections: Double Helix, Möbius Strip.

Informally speaking, a ruled surface is one that is a union of straight lines (the rulings). To be more precise, it is a surface that can be represented parametrically in the form:

$$
x(u, v)=\delta(u)+v * \lambda(u)
$$

where δ is a regular space curve (i.e., δ^{\prime} never vanishes) called the directrix and λ is a smooth curve that does not pass through the origin. Without loss of generality, we can assume that $|\lambda(t)|=1$. For each fixed u we get a line $v \mapsto \delta(u)+v * \lambda(u)$ lying in the surface, and these are the rulings. (Some surfaces can be parameterized in the above form in two essentially different ways, and such surfaces are called doubly-ruled surfaces.)
A ruled surface is called a cylinder if the directrix lies in a plane P and $\lambda(u)$ is a constant direction not parallel to P, and it is called a cone if all the rulings pass through a fixed point V (the vertex).

[^0]Two more interesting examples are quadratic surfaces:

The Hyperboloid of One Sheet:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

which is in fact doubly-ruled, since it can be given parametrically by:

$$
x^{+}(u, v)=a(\cos (u)-v \sin (u)), b(\sin (u)+v \cos (u), c v)
$$

and

$$
\begin{aligned}
x^{-}(u, v)= & a(\cos (u)+v \sin (u)), b(\sin (u)-v \cos (u),-c v), \\
& \text { and the Hyperbolic Paraboloid: }
\end{aligned}
$$

$$
(x, y, z)=(a u, b v, c u v)=a(u, 0,0)+v(0, b, c u)
$$

Another interesting ruled surface is a minimal surface: the Helicoid, $a a=0$, (Catenoid, $a a=\pi / 2$) in the family:

$$
\begin{aligned}
F(u, v) & =b b \sin (a a)(\cosh (v) \cos (u), \cosh (v) \sin (u), v) \\
& +b b \cos (a a)(\sinh (v) \sin (u),-\sinh (v) \cos (u), u) \\
= & \sin (a a)((0,0, b b v)+b b \cosh (v)(\cos (u), \sin (u), 0)) \\
+ & \cos (a a)((0,0, b b u)+b b \sinh (v)(\sin (u),-\cos (u), 0)) .
\end{aligned}
$$

A ruled surface is called a (generalized) right conoid if its rulings are parallel to some plane, P, and all pass through a line L that is orthogonal to P. The Right Conoid is given by taking P to be the $x y$-plane and L the z-axis:
Parametrized: $\quad F(u, v)=(v \cos u, v \sin u, 2 \sin u)$,
Implicitly:

$$
\left(\frac{x}{y}\right)^{2}-\frac{4}{z^{2}}=1
$$

This surface has at $(\sin (u)= \pm 1, v=0)$ two pinch point singularities. The default morph in 3DXM

deforms the Right Conoid to a Helicoid

so that the two stable pinch point singularities disappear, at the final moment, through two unstable singularities:

$$
F_{a a}(u, v)=(v \cos (u), v \sin (u), 2 a a \sin (u)+(1-a a) u) .
$$

Famous for such a singularity is the Whitney Umbrella, another right conoid with rulings parallel to the $\mathrm{x}-\mathrm{y}$-plane:

$$
F(u, v)=(u \cdot v, u, v \cdot v), \quad \text { implicitly: } x^{2}-y^{2} z=0
$$

Again the default morph emphasizes the visualization of the singularity by embedding the Whitney Umbrella into a family of ruled surfaces, which develop a second pinch point singularity that closes the surface at the top:

$$
F_{a a}(u, v)=\left(\begin{array}{c}
u \cdot(a a \cdot v+(1-a a) \sin (\pi v)) \\
u \\
a a \cdot v^{2}-(1-a a) \cos (\pi v)
\end{array}\right)
$$

R.S.P.

[^0]: * This file is from the 3D-XplorMath project. Please see:
 http://3D-XplorMath.org/

