The Right Conoid Surface *

See "About Ruled Surfaces" in the Documentation menu.
A Right Conoid is a surface generated by a 1-parameter family of horizontal straight lines that all meet a vertical straight line. Perhaps the best known example has the parametric equations:

$$
\begin{aligned}
& x=v \cos (u) \\
& y=v \sin (u) \\
& z=2 \sin (u)
\end{aligned}
$$

and another such surface is the "Helicoid". The formulas in 3DXM deform one into the other - see the default morph:

$$
\begin{gathered}
x=v \cos (u) \\
y=v \sin (u) \\
z=2 a a \sin (u)+(1-a a) u,
\end{gathered}
$$

with $0 \leq a a \leq 1$.
Notice, how the stable "pinch point singularity" of the Right Conoid disappears during this morph, passing through a nonstable singularity. For another family of Right Conoids, view the Whitney Umbrella and its default morph.

[^0]
[^0]: *This file is from the 3D-XploreMath project.
 Please see http://vmm.math.uci.edu/3D-XplorMath/index.html

