The Pseudosphere*

from a Sine-Gordon solution

The Pseudosphere was first found as a surface of revolution, with the Tractrix as meridian (see Planar Curves). It has Gauss curvature $K=-1$. See:
Constant Curvature Surfaces of Revolution.
Later in the 19th century it was discovered that surfaces with $K=-1$ can be constructed from soliton solutions of the Sine-Gordon Equation (SGE). This is explained in: About Pseudospherical Surfaces, which can be obtained from the Documentation Menu.

At about the same time, in 1868, Beltrami proved that the axiomatically constructed non-Euclidean geometry of Bolyai and Lobachevsky was the same as the simply connected 2-dimensional Riemannian geometry of Gauss curvature $K=-1$; for example the Riemannian metric of the Pseudosphere, extended to the plane: $d u^{2}+\exp (-2 u) d v^{2}$. Their common name today is Hyperbolic Geometry.

The meridians are examples of asymptotic geodesics, a key notion in hyperbolic geometry. Curves, orthogonal to a family of asymptotic geodesics are called horocycles in hyperbolic geometry. They have infinite length in the simply connected case, on the Pseudosphere one sees finite por-

[^0]tions as the latitude circles.
In the theory which relates SGE solutions to surface in \mathbb{R}^{3} of Gauss curvature $K=-1$, one first writes down the first and second fundamental forms in terms of such a solution $q(x, t)$ of SGE:
$$
\mathrm{I}=d x^{2}+d t^{2}+2 \cos q d x d t, \quad \mathrm{II}=2 \sin q d x d t
$$

The Gauss-Codazzi integrability conditions are satisfied, because q is an SGE solution. One then obtains the first parameter line of the surface by integrating an ODE and the transversal other family by integrating a second ODE. The first and second fundamental forms above are written in asymptote coordinates, which means: the normal curvature of the surface in the direction of the parameter lines is 0 . (Note that x and t are arc length parameters on the parameter lines. This leads to the Tchebycheff net mentioned in "About Pseudospherical Curves".) Such parametrizations do not offer a good view of the surface. In 3DXM, therefore, the integration first creates one curvature line of the surface and secondly the orthogonal family of curvature lines with $u=x+t, v=x-t$. One can view this before the surface is shown with these parameter lines.
The SGE solution for the Pseudosphere is:

$$
q(x, t):=4 \arctan (\exp (x))
$$

H.K.

[^0]: * This file is from the 3D-XplorMath project. Please see:
 http://3D-XplorMath.org/

