Nephroid of Freeth*

This curve, first described 1879, is the member $a a=0$ in the following family of curves:

$$
\begin{aligned}
x(t) & =(1-a a \cdot \sin (t / 2)) \cos (t) \\
y(t) & =(1-a a \cdot \sin (t / 2)) \sin (t)
\end{aligned}
$$

The default morph starts at $a a=0$ with a circle, traversed twice. For small $a a>0$ one double point develops. At $a a=1$ the curve reaches the origin with a cusp. This cusp deforms into a second double point. At $a a=\sqrt{2}$ the two tangents of the double point coincide and are vertical. This point of double tangency deforms into three double points. The Nephroid of Freeth is reached at $a a=2$, when two of the mentioned three double points coincide with the earliest one to form a triple intersection.
Apart from being in a simple family, which shows all these singularities of curves, we learnt from
www.2dcurves.com/derived/strophoid.html
that the Nephroid of Freeth has the curious property that one can construct a regular sevengon with it: The vertical tangent at the triple intersection meets the curve again in two points whose radius vectors enclose the angle $3 \pi / 7$.

[^0]
[^0]: * This file is from the 3D-XplorMath project. Please see:
 http://3D-XplorMath.org/

