Monkey Saddle, Torus, Dupin Cyclide *

The Monkey Saddle is a saddle shaped surface with three down valleys, allowing the two legs and the tail of the monkey to hang down. At its symmetry point both principal curvatures are 0 , and, this umbilic point is the simplest singularity of a curvature line field. Choose in the Action Menu: Add Principal Curvature Fields; in Wireframe Display the parameter lines are omitted, the curvature line fields (or one of them) represent the surface.
Its Parametrization as graph of a function is

$$
F_{\text {Monkey }}(u, v)=\left(a a \cdot v, b b \cdot u, c c \cdot\left(u^{3}-3 u v^{2}\right)\right) .
$$

In Geometry the word Torus usually implies a surface of revolution; often a circle in the x-z-plane ist rotated around the z-axis. In 3DXM an ellipse with axes $b b, c c$ is rotated, its midpoint rotates in the x - y-plane on a circle of radius $a a$. The followingParametrization is used:

$$
F_{\text {Torus }}(u, v)=\left(\begin{array}{c}
(a a+b b \cdot \cos u) \cos v \\
(a a+b b \cdot \cos u) \sin v \\
c c \cdot \sin u
\end{array}\right)
$$

Note that the parameter lines are principal curvature lines, see Action Menu: Add Principal Curvature Fields.

The Torus is also visualized among the Implicit Surfaces, we derive its equation. In the x-z-plane we have two ellipses

[^0]and we multiply their equations:
\[

$$
\begin{aligned}
& \left(\left(\frac{x-a a}{b b}\right)^{2}+\left(\frac{z}{c c}\right)^{2}-1\right) \cdot\left(\left(\frac{x+a a}{b b}\right)^{2}+\left(\frac{z}{c c}\right)^{2}-1\right) \\
= & \left(\frac{x^{2}-a a^{2}}{b b^{2}}\right)^{2}+2\left(\frac{x^{2}+a a^{2}}{b b^{2}}\right)\left(\left(\frac{z}{c c}\right)^{2}-1\right)+\left(\left(\frac{z}{c c}\right)^{2}-1\right)^{2} .
\end{aligned}
$$
\]

For the rotation around the z -axis we have to replace x by $r=\sqrt{x^{2}+y^{2}}$. The second expression avoids square roots.

Implicit Equation of the Torus:

$$
\begin{aligned}
& f_{\text {Torus }}(\vec{x})=f(r, z)=0 \text { with } r=\sqrt{x^{2}+y^{2}} \text { and } \\
& f(r, z):= \\
& \left(\frac{r^{2}-a a^{2}}{b b^{2}}\right)^{2}+2\left(\frac{r^{2}+a a^{2}}{b b^{2}}\right)\left(\left(\frac{z}{c c}\right)^{2}-1\right)+\left(\left(\frac{z}{c c}\right)^{2}-1\right)^{2} .
\end{aligned}
$$

The Cyclides of Dupin are obtained by inverting the above torus in a sphere. The sphere of inversion has its center $\vec{m}=(d d, 0, e e)$ in the x-z-plane and has radius $f f$. The Default Morph moves the center closer to the torus. Note that inversions map curvature lines to curvature lines.

The Inversion: $\vec{x} \mapsto \operatorname{Inv}(\vec{x}):=\frac{f f^{2}(\vec{x}-\vec{m})}{|\vec{x}-\vec{m}|^{2}}+\vec{m}+\left(\begin{array}{c}0 \\ 0 \\ h h\end{array}\right)$,
Parametrization: $\quad F_{\text {Cyclide }}(\vec{x}):=\operatorname{Inv}\left(F_{\text {Torus }}(\vec{x})\right)$, Implicit Equation: $f_{\text {Cyclide }}(\vec{x}):=f_{\text {Torus }}\left(\operatorname{Inv}^{-1}(\vec{x})\right)=0$.

[^0]: * This file is from the 3D-XplorMath project. Please see: http://3D-XplorMath.org/

