Loxodrome*

A Loxodrome (aka a rhumb line) is a route that a boat would take if it kept a constant compass heading (so that on a Mercator projection it is simply a straight line). To be more formal, a loxodrome is a path on the unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ that makes a constant angle with the great circles of longitude ("meridians"). Recall that the logarithmic spirals in the (complex) plane \mathbb{C} make a constant angle with the rays through the origin. Stereographic projection St: $\mathbb{C} \mapsto \mathbb{S}^{2}$ unites these two facts: It maps the radial lines in \mathbb{C} to the meridians on \mathbb{S}^{2} and it is also angle preserving ("conformal"). The logarithmic spirals - which meet the radial lines in \mathbb{C} under constant angles - are therefore mapped by stereographic projection to the loxodromes on \mathbb{S}^{2} - which meet the meridians under constant angles.
On the other hand, the complex exponential $\exp : \mathbb{C} \mapsto \mathbb{C}$ is also conformal and it maps the lines parallel to the real axis to the radial lines in \mathbb{C} and all other straight lines to curves which meet the radial lines under constant angles, i.e. the logarithmic spirals. These are therefore parametrized as $c(t)=\exp ((1+i \cdot a a) \cdot t)$ and the loxodromes on the sphere are given parametrically as

$$
t \mapsto \operatorname{St}(\exp ((1+i \cdot a a) \cdot t))
$$

1: Their osculating circles all lie on the sphere. And 2: the Mercator map from the sphere is: $\exp ^{-1} \circ \mathrm{St}^{-1}: \mathbb{S}^{2} \mapsto \mathbb{C}$. R.S.P.

[^0]
[^0]: * This file is from the 3D-XplorMath project. Please see:
 http://3D-XplorMath.org/

