Hyperbola

See also Parabola, Ellipse, Conic Sections and their ATOs.

The most common parametric equations for a Hyperbola with semi-axes aa and bb are:
$x(t)= \pm a a \cosh (t), \quad y(t)=b b \sinh (t), \quad t \in \mathbb{R} ;$ and another version is:
$x(t)=a a / \cos (t), y(t)=b b \sin (t) / \cos (t), \quad t \in[0,2 \pi]$. The corresponding implicit equation is:
$(x / a a)^{2}-(y / b b)^{2}=1$.
The function graphs: $\{(x, y) ; y=1 / x+m \cdot x\}$ are also Hyperbolae.
A geometric definition of the Hyperbola is:

A Hyperbola is the set of points for which the difference of the distance from two focal points is constant.

Or:
A Hyperbola is the set of points which have the same distance from a circle and a (focal) point outside that circle.

If one applies an inversion $(x, y) \rightarrow(x, y) /\left(x^{2}+y^{2}\right)$ to a right Hyperbola (i.e. $a a=b b$) then one obtains a Lemniscate.

In the visualization of the complex map $z \rightarrow z+1 / z$ in Polar Coordinates, the image of the radial lines are the Hyperbolae:
$x(R)=(R+1 / R) \cos \phi$
$y(R)=(R-1 / R) \sin \phi, \quad R \in \mathbb{R}$.

And the image of the standard Cartesian Grid under the complex map $z \rightarrow \sqrt{z}$ is a grid of two families of orthogonal Hyperbolae.
(H.K.)

