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The original Costa surface was responsible for the
rekindling of interest in minimal surfaces in 1982.
It is a minimal embedding of the 3-punctured
square torus. Its planar symmetry lines cut this
surface into four conformal squares and the two
straight lines through the saddle are the diago-
nals of these squares. Because of the emphasis on
the symmetries, our formulas are taken from [K2.]
The Costa-Hoffman-Meeks surfaces are general-
izations of the Costa surface; their genus grows
as the dihedral symmetry (controlled by dd) is
increased. The underlying Riemann surfaces are
tesselated by hyperbolic squares with angles π

k ,
(k = 2, 3, ...).

The Gauss map of such a surface is determined by
its qualitative properties only up to a multiplica-
tive factor cc which we suggest for the morphing
(as in the Chen-Gackstatter case). It closes the
period (at cc0) by an intermediate value argu-
ment.



As in Costa’s case, the qualitative picture deter-
mines the Gauss map only up to a multiplicative
factor. The standard morph shows the depen-
dence of the surfaces on this factor, closing the
period at cc0.
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For a discussion of techniques for creating mini-
mal surfaces with various qualitative features by
appropriate choices of Weierstrass data, see either
[KWH], or pages 192–217 of [DHKW].
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