Surfaces of revolution with constant Gauß curvature

A surface of revolution is usually described by giving its meridian curve $s \mapsto(r(s), h(s))$. The surface is then obtained by rotation:

$$
(x, y, z):=(r \cos \varphi, r \sin \varphi, h) .
$$

Any kind of curvature condition can be expressed as a differential equation for the meridian curve.

The case of constant Gauß curvature K is particularly simple if the meridian is parametrized by arclength, i.e., $r^{\prime 2}+h^{\prime 2}=1$. In this case the meridian is determined by

$$
r^{\prime \prime}(s)+K \cdot r(s)=0, \quad h(s)=\int_{0}^{s} \sqrt{1-r^{\prime}(t)^{2}} d t
$$

We describe the three kinds of examples in the case $K=1$.

Sphere:

$$
r(s)=\sin (s), \quad 0 \leq s \leq \pi
$$

With cone points:

$$
r(s)=a \sin (s), \quad 0 \leq s \leq \pi, 0<a<1
$$

With singularity curve:
$r(s)=a \sin (s), \quad b \leq s \leq \pi-b, 1<a, \cos (b):=1 / a$.

