Chain of Half-Catenoids and Field of Half-Catenoids *

These surfaces played no role in the history of minimal surfaces, but they explain very nicely how the Weierstrass representation works, compare Half-Catenoids and Weierstrass Representation.

Weierstrass representation of a vertical catenoid:

$$
g(z)=z, \quad d h=\frac{d z}{z}
$$

Weierstrass representation of a singly periodic chain of vertical half-catenoids:

$$
g(z)=b b \cdot \sin (z), d h=\frac{d z}{\sin (z)}
$$

The simple zeros of the sine function create half-catenoid punctures. These punctures have no real periods since two orthogonal planes of mirror symmetry cut each halfcatenoid into four congruent pieces. Neighboring halfcatenoids are separated by straight lines. They are axes of 180° rotation symmetry. One needs to compute the surface only in a strip between two neighboring lines. The scaling

* This file is from the 3D-XplorMath project. Please see:
http://3D-XplorMath.org/
TOC
factor $b b$ in the Gauss map controls the size of the halfcatenoids relative to the distance between them. Two such strips are a fundamental domain for the group of translation symmetries.

Weierstrass representation of a doubly periodic field of vertical half-catenoids:

$$
g(z)=b b \cdot J_{F}(z), d h=\frac{d z}{J_{F}(z)} .
$$

The function J_{F} is a doubly periodic function on \mathbb{C}, in this case with a rectangular fundamental domain. In each fundamental domain J_{F} has two simple zeros and two simple poles, see 'Symmetries of 'Elliptic Functions". The zeros of the Gauss map g together with the poles of $d h$ create the half-catenoid punctures. The poles of g are cancelled by the zeros of $d h$, they give the polar centers on the surface. As in the previous examples we have orthogonal planes of mirror symmetry cutting each half-catenoid and we have straight lines on the surface, running between the half-catenoids. These symmetries of the minimal surface are a consequence of the corresponding symmetries of the elliptic function which determines the Weierstrass data. The scaling parameter $b b$ of the Gauss map changes the size of the half-catenoids relative to their distance. H.K.

